Files
archon/original_archon/iterations/v1-single-agent/README.md

122 lines
3.2 KiB
Markdown

# Archon V1 - Basic Pydantic AI Agent to Build other Pydantic AI Agents
This is the first iteration of the Archon project - no use of LangGraph and built with a single AI agent to keep things very simple and introductory.
An intelligent documentation crawler and RAG (Retrieval-Augmented Generation) agent built using Pydantic AI and Supabase that is capable of building other Pydantic AI agents. The agent crawls the Pydantic AI documentation, stores content in a vector database, and provides Pydantic AI agent code by retrieving and analyzing relevant documentation chunks.
## Features
- Pydantic AI documentation crawling and chunking
- Vector database storage with Supabase
- Semantic search using OpenAI embeddings
- RAG-based question answering
- Support for code block preservation
- Streamlit UI for interactive querying
## Prerequisites
- Python 3.11+
- Supabase account and database
- OpenAI API key
- Streamlit (for web interface)
## Installation
1. Clone the repository:
```bash
git clone https://github.com/coleam00/archon.git
cd archon/iterations/v1-single-agent
```
2. Install dependencies (recommended to use a Python virtual environment):
```bash
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
pip install -r requirements.txt
```
3. Set up environment variables:
- Rename `.env.example` to `.env`
- Edit `.env` with your API keys and preferences:
```env
OPENAI_API_KEY=your_openai_api_key
SUPABASE_URL=your_supabase_url
SUPABASE_SERVICE_KEY=your_supabase_service_key
LLM_MODEL=gpt-4o-mini # or your preferred OpenAI model
```
## Usage
### Database Setup
Execute the SQL commands in `site_pages.sql` to:
1. Create the necessary tables
2. Enable vector similarity search
3. Set up Row Level Security policies
In Supabase, do this by going to the "SQL Editor" tab and pasting in the SQL into the editor there. Then click "Run".
### Crawl Documentation
To crawl and store documentation in the vector database:
```bash
python crawl_pydantic_ai_docs.py
```
This will:
1. Fetch URLs from the documentation sitemap
2. Crawl each page and split into chunks
3. Generate embeddings and store in Supabase
### Streamlit Web Interface
For an interactive web interface to query the documentation:
```bash
streamlit run streamlit_ui.py
```
The interface will be available at `http://localhost:8501`
## Configuration
### Database Schema
The Supabase database uses the following schema:
```sql
CREATE TABLE site_pages (
id UUID PRIMARY KEY DEFAULT uuid_generate_v4(),
url TEXT,
chunk_number INTEGER,
title TEXT,
summary TEXT,
content TEXT,
metadata JSONB,
embedding VECTOR(1536)
);
```
### Chunking Configuration
You can configure chunking parameters in `crawl_pydantic_ai_docs.py`:
```python
chunk_size = 5000 # Characters per chunk
```
The chunker intelligently preserves:
- Code blocks
- Paragraph boundaries
- Sentence boundaries
## Project Structure
- `crawl_pydantic_ai_docs.py`: Documentation crawler and processor
- `pydantic_ai_expert.py`: RAG agent implementation
- `streamlit_ui.py`: Web interface
- `site_pages.sql`: Database setup commands
- `requirements.txt`: Project dependencies
## Contributing
Contributions are welcome! Please feel free to submit a Pull Request.