- Fixing the crawl errors for large crawled files like the NUXT docs.

- Removing the "Completed" steps in reporting.
- Cleanup Sockets from PR 250 and 395 with Code Rabbit cleanup suggestions.
This commit is contained in:
sean-eskerium
2025-08-20 21:16:12 -04:00
parent 6c356fe8cb
commit c16498ceab
7 changed files with 279 additions and 210 deletions

View File

@@ -47,10 +47,10 @@ describe('API Configuration', () => {
delete (import.meta.env as any).VITE_API_URL;
delete (import.meta.env as any).ARCHON_SERVER_PORT;
const { getApiUrl } = await import('../../src/config/api');
expect(() => getApiUrl()).toThrow('ARCHON_SERVER_PORT environment variable is required');
expect(() => getApiUrl()).toThrow('Default value: 8181');
// The error will be thrown during module import because API_FULL_URL calls getApiUrl()
await expect(async () => {
await import('../../src/config/api');
}).rejects.toThrow('ARCHON_SERVER_PORT environment variable is required');
});
it('should use ARCHON_SERVER_PORT when set in development', async () => {
@@ -156,73 +156,4 @@ describe('API Configuration', () => {
});
});
describe('MCP Client Service Configuration', () => {
let originalEnv: any;
beforeEach(() => {
originalEnv = { ...import.meta.env };
vi.resetModules();
});
afterEach(() => {
Object.keys(import.meta.env).forEach(key => {
delete (import.meta.env as any)[key];
});
Object.assign(import.meta.env, originalEnv);
});
it('should throw error when ARCHON_MCP_PORT is not set', async () => {
delete (import.meta.env as any).ARCHON_MCP_PORT;
const { MCPClientService } = await import('../../src/services/mcpClientService');
const service = new MCPClientService();
await expect(service.createArchonClient()).rejects.toThrow('ARCHON_MCP_PORT environment variable is required');
await expect(service.createArchonClient()).rejects.toThrow('Default value: 8051');
});
it('should use ARCHON_MCP_PORT when set', async () => {
(import.meta.env as any).ARCHON_MCP_PORT = '9051';
(import.meta.env as any).ARCHON_SERVER_PORT = '8181';
// Mock window.location
Object.defineProperty(window, 'location', {
value: {
protocol: 'http:',
hostname: 'localhost'
},
writable: true
});
// Mock the API call
global.fetch = vi.fn().mockResolvedValue({
ok: true,
json: async () => ({
id: 'test-id',
name: 'Archon',
transport_type: 'http',
connection_status: 'connected'
})
});
const { MCPClientService } = await import('../../src/services/mcpClientService');
const service = new MCPClientService();
try {
await service.createArchonClient();
// Verify the fetch was called with the correct URL
expect(global.fetch).toHaveBeenCalledWith(
expect.stringContaining('/api/mcp/clients'),
expect.objectContaining({
method: 'POST',
body: expect.stringContaining('9051')
})
);
} catch (error) {
// If it fails due to actual API call, that's okay for this test
// We're mainly testing that it constructs the URL correctly
expect(error).toBeDefined();
}
});
});
// MCP Client Service Configuration tests removed - service not currently in use

View File

@@ -211,14 +211,21 @@ class CodeExtractionService:
Returns:
List of code blocks with metadata
"""
import asyncio
import time
# Progress will be reported during the loop below
all_code_blocks = []
total_docs = len(crawl_results)
completed_docs = 0
# PERFORMANCE: Track extraction time per document
MAX_EXTRACTION_TIME_PER_DOC = 5.0 # 5 seconds max per document
for doc in crawl_results:
try:
doc_start_time = time.time()
source_url = doc["url"]
html_content = doc.get("html", "")
md = doc.get("markdown", "")
@@ -228,9 +235,7 @@ class CodeExtractionService:
f"Document content check | url={source_url} | has_html={bool(html_content)} | has_markdown={bool(md)} | html_len={len(html_content) if html_content else 0} | md_len={len(md) if md else 0}"
)
# Get dynamic minimum length based on document context
# Extract some context from the document for analysis
doc_context = md[:1000] if md else html_content[:1000] if html_content else ""
# Dynamic minimum length is handled inside the extraction methods
# Check markdown first to see if it has code blocks
if md:
@@ -281,15 +286,32 @@ class CodeExtractionService:
# If not a text file or no code blocks found, try HTML extraction first
if len(code_blocks) == 0 and html_content and not is_text_file:
safe_logfire_info(
f"Trying HTML extraction first | url={source_url} | html_length={len(html_content)}"
)
html_code_blocks = await self._extract_html_code_blocks(html_content)
if html_code_blocks:
code_blocks = html_code_blocks
# PERFORMANCE: Check if we've already spent too much time on this document
elapsed_time = time.time() - doc_start_time
if elapsed_time > MAX_EXTRACTION_TIME_PER_DOC:
safe_logfire_info(
f"Found {len(code_blocks)} code blocks from HTML | url={source_url}"
f"⏱️ Skipping HTML extraction for {source_url} - already spent {elapsed_time:.1f}s"
)
else:
safe_logfire_info(
f"Trying HTML extraction first | url={source_url} | html_length={len(html_content)}"
)
# Create a timeout for HTML extraction
remaining_time = MAX_EXTRACTION_TIME_PER_DOC - elapsed_time
try:
html_code_blocks = await asyncio.wait_for(
self._extract_html_code_blocks(html_content, source_url),
timeout=remaining_time
)
if html_code_blocks:
code_blocks = html_code_blocks
safe_logfire_info(
f"Found {len(code_blocks)} code blocks from HTML | url={source_url}"
)
except asyncio.TimeoutError:
safe_logfire_info(
f"⏱️ HTML extraction timed out after {remaining_time:.1f}s for {source_url}"
)
# If still no code blocks, try markdown extraction as fallback
if len(code_blocks) == 0 and md and "```" in md:
@@ -319,6 +341,14 @@ class CodeExtractionService:
# Update progress only after completing document extraction
completed_docs += 1
extraction_time = time.time() - doc_start_time
if extraction_time > 2.0: # Log slow extractions
safe_logfire_info(
f"⏱️ Document extraction took {extraction_time:.1f}s | url={source_url} | "
f"html_size={len(html_content) if html_content else 0} | "
f"blocks_found={len([b for b in all_code_blocks if b['source_url'] == source_url])}"
)
if progress_callback and total_docs > 0:
# Calculate progress within the specified range
raw_progress = completed_docs / total_docs
@@ -340,13 +370,14 @@ class CodeExtractionService:
return all_code_blocks
async def _extract_html_code_blocks(self, content: str) -> list[dict[str, Any]]:
async def _extract_html_code_blocks(self, content: str, source_url: str = "") -> list[dict[str, Any]]:
"""
Extract code blocks from HTML patterns in content.
This is a fallback when markdown conversion didn't preserve code blocks.
Args:
content: The content to search for HTML code patterns
source_url: The URL of the document being processed
min_length: Minimum length for code blocks
Returns:
@@ -356,6 +387,20 @@ class CodeExtractionService:
# Add detailed logging
safe_logfire_info(f"Processing HTML of length {len(content)} for code extraction")
# PERFORMANCE OPTIMIZATION: Skip extremely large HTML files or chunk them
MAX_HTML_SIZE = 1_000_000 # 1MB limit for single-pass processing (increased from 500KB)
if len(content) > MAX_HTML_SIZE:
safe_logfire_info(
f"⚠️ HTML content is very large ({len(content)} bytes). "
f"Limiting to first {MAX_HTML_SIZE} bytes to prevent timeout."
)
# For very large files, focus on the first portion where code examples are likely to be
content = content[:MAX_HTML_SIZE]
# Try to find a good cutoff point (end of a tag)
last_tag_end = content.rfind('>')
if last_tag_end > MAX_HTML_SIZE - 1000:
content = content[:last_tag_end + 1]
# Check if we have actual content
if len(content) < 1000:
@@ -507,9 +552,71 @@ class CodeExtractionService:
),
]
for pattern_tuple in patterns:
# PERFORMANCE: Early exit checks to avoid unnecessary regex processing
# Check more content (20KB instead of 5KB) and add URL-based exceptions
check_size = min(20000, len(content)) # Check first 20KB or entire content if smaller
has_code_indicators = any(indicator in content[:check_size] for indicator in
['<pre', '<code', 'language-', 'hljs', 'prism', 'shiki', 'highlight'])
# Never skip certain documentation sites that we know have code
is_known_code_site = any(domain in source_url.lower() for domain in
['milkdown', 'github.com', 'gitlab', 'docs.', 'dev.', 'api.'])
if not has_code_indicators and not is_known_code_site:
safe_logfire_info(f"No code indicators found in first {check_size} chars and not a known code site, skipping HTML extraction | url={source_url}")
return []
if is_known_code_site and not has_code_indicators:
safe_logfire_info(f"Known code site but no indicators in first {check_size} chars, continuing anyway | url={source_url}")
# PERFORMANCE: Limit number of patterns to check based on detected libraries
patterns_to_check = []
content_lower = content[:10000].lower() # Check first 10KB for library detection
# Selectively add patterns based on what's detected
if 'milkdown' in content_lower:
patterns_to_check.extend([p for p in patterns if 'milkdown' in p[1]])
if 'monaco' in content_lower:
patterns_to_check.extend([p for p in patterns if 'monaco' in p[1]])
if 'codemirror' in content_lower or 'cm-' in content_lower:
patterns_to_check.extend([p for p in patterns if 'codemirror' in p[1]])
if 'prism' in content_lower:
patterns_to_check.extend([p for p in patterns if 'prism' in p[1]])
if 'hljs' in content_lower or 'highlight' in content_lower:
patterns_to_check.extend([p for p in patterns if 'hljs' in p[1] or 'highlight' in p[1]])
if 'shiki' in content_lower or 'astro' in content_lower:
patterns_to_check.extend([p for p in patterns if 'shiki' in p[1] or 'astro' in p[1]])
# Always include standard patterns as fallback (get ALL standard/generic patterns, not just last 5)
standard_patterns = [p for p in patterns if any(tag in p[1] for tag in ['standard', 'generic', 'prism', 'hljs'])]
patterns_to_check.extend(standard_patterns)
# Remove duplicates while preserving order
seen = set()
unique_patterns = []
for p in patterns_to_check:
if p[1] not in seen:
unique_patterns.append(p)
seen.add(p[1])
patterns_to_check = unique_patterns
# If we have very few patterns and it's a known code site, add more generic patterns
if len(patterns_to_check) < 5 and is_known_code_site:
safe_logfire_info(f"Known code site with few patterns ({len(patterns_to_check)}), adding more generic patterns")
patterns_to_check = patterns # Use all patterns for known code sites
safe_logfire_info(f"Checking {len(patterns_to_check)} relevant patterns out of {len(patterns)} total")
for pattern_tuple in patterns_to_check:
pattern_str, source_type = pattern_tuple
matches = list(re.finditer(pattern_str, content, re.DOTALL | re.IGNORECASE))
# PERFORMANCE: Use re.finditer with smaller chunks for very long content
# Only use DOTALL for patterns that really need it (multi-line blocks)
flags = re.IGNORECASE
if 'monaco' in source_type or 'codemirror' in source_type:
flags |= re.DOTALL # These need DOTALL for multi-line matching
matches = list(re.finditer(pattern_str, content, flags))
# Log pattern matches for Milkdown patterns and CodeMirror
if matches and (

View File

@@ -428,6 +428,9 @@ class CrawlingService:
)
# Complete - send both the progress update and completion event
# CRITICAL: This is the ONLY place that should send status="completed"!
# All crawl strategies (batch, recursive, etc.) should use "finished" or other words.
# The frontend disconnects when it sees status="completed", so this must be the final step.
await update_mapped_progress(
"completed",
100,

View File

@@ -73,7 +73,8 @@ class BatchCrawlStrategy:
except Exception as e:
# For non-critical errors (e.g., network issues), use defaults but log prominently
logger.error(
f"Failed to load crawl settings from database: {e}, using defaults", exc_info=True
f"Failed to load crawl settings from database: {e}, using defaults",
exc_info=True
)
batch_size = 50
if max_concurrent is None:
@@ -98,102 +99,93 @@ class BatchCrawlStrategy:
wait_for_images=False, # Skip images for faster crawling
scan_full_page=True, # Trigger lazy loading
exclude_all_images=False,
remove_overlay_elements=True,
process_iframes=True,
)
else:
# Configuration for regular batch crawling
# Regular sites use standard configuration
crawl_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
stream=True, # Enable streaming
stream=True,
markdown_generator=self.markdown_generator,
wait_until=settings.get("CRAWL_WAIT_STRATEGY", "domcontentloaded"),
page_timeout=int(settings.get("CRAWL_PAGE_TIMEOUT", "45000")),
page_timeout=int(settings.get("CRAWL_PAGE_TIMEOUT", "30000")),
delay_before_return_html=float(settings.get("CRAWL_DELAY_BEFORE_HTML", "0.5")),
scan_full_page=True,
wait_for_images=False,
scan_full_page=False, # Don't scan full page for non-doc sites
exclude_all_images=False,
)
# Transform URLs if needed
processed_urls = [transform_url_func(url) for url in urls]
# Create memory adaptive dispatcher
dispatcher = MemoryAdaptiveDispatcher(
memory_threshold_percent=memory_threshold,
max_sessions=max_concurrent,
memory_threshold_mb=memory_threshold,
check_interval=check_interval,
max_session_permit=max_concurrent,
)
async def report_progress(percentage: int, message: str):
"""Helper to report progress if callback is available"""
# Crawl URLs in batches using arun_many
results = []
total_urls = len(processed_urls)
for batch_start in range(0, total_urls, batch_size):
batch_end = min(batch_start + batch_size, total_urls)
batch = processed_urls[batch_start:batch_end]
# Calculate progress for this batch
if progress_callback:
await progress_callback("crawling", percentage, message)
total_urls = len(urls)
await report_progress(start_progress, f"Starting to crawl {total_urls} URLs...")
# Use configured batch size
successful_results = []
processed = 0
# Transform all URLs at the beginning
url_mapping = {} # Map transformed URLs back to original
transformed_urls = []
for url in urls:
transformed = transform_url_func(url)
transformed_urls.append(transformed)
url_mapping[transformed] = url
for i in range(0, total_urls, batch_size):
batch_urls = transformed_urls[i : i + batch_size]
batch_start = i
batch_end = min(i + batch_size, total_urls)
# Report batch start with smooth progress
progress_percentage = start_progress + int(
(i / total_urls) * (end_progress - start_progress)
)
await report_progress(
progress_percentage,
f"Processing batch {batch_start + 1}-{batch_end} of {total_urls} URLs...",
)
# Crawl this batch using arun_many with streaming
logger.info(
f"Starting parallel crawl of batch {batch_start + 1}-{batch_end} ({len(batch_urls)} URLs)"
)
batch_results = await self.crawler.arun_many(
urls=batch_urls, config=crawl_config, dispatcher=dispatcher
)
# Handle streaming results
j = 0
async for result in batch_results:
processed += 1
if result.success and result.markdown:
# Map back to original URL
original_url = url_mapping.get(result.url, result.url)
successful_results.append({
"url": original_url,
"markdown": result.markdown,
"html": result.html, # Use raw HTML
})
else:
logger.warning(
f"Failed to crawl {result.url}: {getattr(result, 'error_message', 'Unknown error')}"
)
# Report individual URL progress with smooth increments
progress_percentage = start_progress + int(
(processed / total_urls) * (end_progress - start_progress)
batch_progress = start_progress + ((batch_start / total_urls) * (end_progress - start_progress))
await progress_callback(
"batch_crawling",
int(batch_progress),
f"Crawling batch {batch_start // batch_size + 1} ({batch_start + 1}-{batch_end}/{total_urls} URLs)"
)
# Report more frequently for smoother progress
if (
processed % 5 == 0 or processed == total_urls
): # Report every 5 URLs or at the end
await report_progress(
progress_percentage,
f"Crawled {processed}/{total_urls} pages ({len(successful_results)} successful)",
)
j += 1
await report_progress(
end_progress,
f"Batch crawling completed: {len(successful_results)}/{total_urls} pages successful",
)
return successful_results
# Run batch crawl
try:
batch_results = await self.crawler.arun_many(
batch,
config=crawl_config,
dispatcher=dispatcher
)
# Process results
for result in batch_results:
if result.success:
results.append({
"url": result.url,
"markdown": result.markdown_v2.raw_markdown if result.markdown_v2 else "",
"success": True,
"metadata": result.extracted_content if hasattr(result, 'extracted_content') else {}
})
else:
logger.warning(f"Failed to crawl {result.url}: {result.error_message}")
results.append({
"url": result.url,
"markdown": "",
"success": False,
"error": result.error_message
})
except Exception as e:
logger.error(f"Batch crawl error: {e}", exc_info=True)
# Add failed results for this batch
for url in batch:
results.append({
"url": url,
"markdown": "",
"success": False,
"error": str(e)
})
# Update progress after batch completion
# IMPORTANT: Use "finished" not "completed" - only the final orchestrator should send "completed"
if progress_callback:
batch_progress = start_progress + ((batch_end / total_urls) * (end_progress - start_progress))
await progress_callback(
"batch_crawling",
int(batch_progress),
f"Finished batch {batch_start // batch_size + 1}"
)
return results

View File

@@ -60,7 +60,7 @@ class RecursiveCrawlStrategy:
if not self.crawler:
logger.error("No crawler instance available for recursive crawling")
if progress_callback:
await progress_callback("error", 0, "Crawler not available")
await progress_callback("error", 0, "Crawler not available", step_info={"currentStep": "error", "stepMessage": "Crawler not available"})
return []
# Load settings from database - fail fast on configuration errors
@@ -78,7 +78,8 @@ class RecursiveCrawlStrategy:
except Exception as e:
# For non-critical errors (e.g., network issues), use defaults but log prominently
logger.error(
f"Failed to load crawl settings from database: {e}, using defaults", exc_info=True
f"Failed to load crawl settings from database: {e}, using defaults",
exc_info=True
)
batch_size = 50
if max_concurrent is None:
@@ -126,11 +127,19 @@ class RecursiveCrawlStrategy:
)
async def report_progress(percentage: int, message: str, **kwargs):
"""Helper to report progress if callback is available"""
"""Helper to report progress if callback is available
IMPORTANT: Never use "complete" or "completed" in messages here!
This is just an intermediate step in the overall crawl process.
Only the final orchestrator should send "completed" status.
"""
if progress_callback:
# Add step information for multi-progress tracking
step_info = {"currentStep": message, "stepMessage": message, **kwargs}
await progress_callback("crawling", percentage, message, **step_info)
step_info = {
"currentStep": message,
"stepMessage": message
}
await progress_callback("crawling", percentage, message, step_info=step_info, **kwargs)
visited = set()
@@ -183,7 +192,9 @@ class RecursiveCrawlStrategy:
# Use arun_many for native parallel crawling with streaming
logger.info(f"Starting parallel crawl of {len(batch_urls)} URLs with arun_many")
batch_results = await self.crawler.arun_many(
urls=batch_urls, config=run_config, dispatcher=dispatcher
urls=batch_urls,
config=run_config,
dispatcher=dispatcher
)
# Handle streaming results from arun_many
@@ -239,14 +250,16 @@ class RecursiveCrawlStrategy:
current_urls = next_level_urls
# Report completion of this depth
# Report completion of this depth - IMPORTANT: Use "finished" not "completed"!
await report_progress(
depth_end,
f"Depth {depth + 1} completed: {depth_successful} pages crawled, {len(next_level_urls)} URLs found for next depth",
f"Depth {depth + 1} finished: {depth_successful} pages crawled, {len(next_level_urls)} URLs found for next depth",
)
# IMPORTANT: Use "finished" not "complete" - only the final orchestrator should say "completed"
await report_progress(
end_progress,
f"Recursive crawling completed: {len(results_all)} total pages crawled across {max_depth} depth levels",
f"Recursive crawl finished: {len(results_all)} pages successfully crawled",
)
return results_all

View File

@@ -87,30 +87,42 @@ class RateLimiter:
async def acquire(self, estimated_tokens: int = 8000) -> bool:
"""Acquire permission to make API call with token awareness"""
async with self._lock:
now = time.time()
while True: # Use a loop instead of recursion
now = time.time()
# Clean old entries
self._clean_old_entries(now)
# Clean old entries
self._clean_old_entries(now)
# Check if we can make the request
if not self._can_make_request(estimated_tokens):
# Check if we can make the request
if self._can_make_request(estimated_tokens):
# Record the request
self.request_times.append(now)
self.token_usage.append((now, estimated_tokens))
return True
# Calculate wait time
wait_time = self._calculate_wait_time(estimated_tokens)
if wait_time > 0:
logfire_logger.info(
f"Rate limiting: waiting {wait_time:.1f}s",
extra={
"tokens": estimated_tokens,
"current_usage": self._get_current_usage(),
}
)
await asyncio.sleep(wait_time)
return await self.acquire(estimated_tokens)
return False
if wait_time <= 0:
return False
# Record the request
self.request_times.append(now)
self.token_usage.append((now, estimated_tokens))
return True
logfire_logger.info(
f"Rate limiting: waiting {wait_time:.1f}s",
extra={
"tokens": estimated_tokens,
"current_usage": self._get_current_usage(),
}
)
# Release the lock while sleeping to allow other operations
self._lock.release()
try:
await asyncio.sleep(wait_time)
logfire_logger.info(f"Rate limiting: resuming after {wait_time:.1f}s wait")
finally:
# Re-acquire the lock before continuing
await self._lock.acquire()
# Loop will continue and re-check conditions
def _can_make_request(self, estimated_tokens: int) -> bool:
"""Check if request can be made within limits"""

View File

@@ -26,16 +26,6 @@ sio = socketio.AsyncServer(
ping_interval=60, # 1 minute - check connection every minute
)
# Global Socket.IO instance for use across modules
_socketio_instance: socketio.AsyncServer | None = None
def get_socketio_instance() -> socketio.AsyncServer:
"""Get the global Socket.IO server instance."""
global _socketio_instance
if _socketio_instance is None:
_socketio_instance = sio
return _socketio_instance
def create_socketio_app(app: FastAPI) -> socketio.ASGIApp:
"""
@@ -62,3 +52,24 @@ def create_socketio_app(app: FastAPI) -> socketio.ASGIApp:
sio.app = app
return socket_app
# Default Socket.IO event handlers
@sio.event
async def connect(sid, environ):
"""Handle new client connections."""
logger.info(f"Client connected: {sid}")
safe_logfire_info(f"Client connected: {sid}")
@sio.event
async def disconnect(sid):
"""Handle client disconnections."""
logger.info(f"Client disconnected: {sid}")
safe_logfire_info(f"Client disconnected: {sid}")
@sio.event
async def message(sid, data):
"""Handle incoming messages."""
logger.info(f"Received message from {sid}: {data}")
await sio.emit("response", {"data": "Message received!"}, to=sid)