mirror of
https://github.com/samanhappy/mcphub.git
synced 2026-01-01 04:08:52 -05:00
feat: introduce auto routing (#122)
This commit is contained in:
706
src/services/vectorSearchService.ts
Normal file
706
src/services/vectorSearchService.ts
Normal file
@@ -0,0 +1,706 @@
|
||||
import { getRepositoryFactory } from '../db/index.js';
|
||||
import { VectorEmbeddingRepository } from '../db/repositories/index.js';
|
||||
import { ToolInfo } from '../types/index.js';
|
||||
import { getAppDataSource, initializeDatabase } from '../db/connection.js';
|
||||
import { loadSettings } from '../config/index.js';
|
||||
import OpenAI from 'openai';
|
||||
|
||||
// Get OpenAI configuration from smartRouting settings or fallback to environment variables
|
||||
const getOpenAIConfig = () => {
|
||||
try {
|
||||
const settings = loadSettings();
|
||||
const smartRouting = settings.systemConfig?.smartRouting;
|
||||
|
||||
return {
|
||||
apiKey: smartRouting?.openaiApiKey || process.env.OPENAI_API_KEY,
|
||||
baseURL:
|
||||
smartRouting?.openaiApiBaseUrl ||
|
||||
process.env.OPENAI_API_BASE_URL ||
|
||||
'https://api.openai.com/v1',
|
||||
embeddingModel:
|
||||
smartRouting?.openaiApiEmbeddingModel ||
|
||||
process.env.OPENAI_API_EMBEDDING_MODEL ||
|
||||
'text-embedding-3-small',
|
||||
};
|
||||
} catch (error) {
|
||||
console.warn(
|
||||
'Failed to load smartRouting settings, falling back to environment variables:',
|
||||
error,
|
||||
);
|
||||
return {
|
||||
apiKey: '',
|
||||
baseURL: 'https://api.openai.com/v1',
|
||||
embeddingModel: 'text-embedding-3-small',
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
// Environment variables for embedding configuration
|
||||
const EMBEDDING_ENV = {
|
||||
// The embedding model to use - default to OpenAI but allow BAAI/BGE models
|
||||
MODEL: process.env.EMBEDDING_MODEL || getOpenAIConfig().embeddingModel,
|
||||
// Detect if using a BGE model from the environment variable
|
||||
IS_BGE_MODEL: !!(process.env.EMBEDDING_MODEL && process.env.EMBEDDING_MODEL.includes('bge')),
|
||||
};
|
||||
|
||||
// Constants for embedding models
|
||||
const EMBEDDING_DIMENSIONS = 1536; // OpenAI's text-embedding-3-small outputs 1536 dimensions
|
||||
const BGE_DIMENSIONS = 1024; // BAAI/bge-m3 outputs 1024 dimensions
|
||||
const FALLBACK_DIMENSIONS = 100; // Fallback implementation uses 100 dimensions
|
||||
|
||||
// Get dimensions for a model
|
||||
const getDimensionsForModel = (model: string): number => {
|
||||
if (model.includes('bge-m3')) {
|
||||
return BGE_DIMENSIONS;
|
||||
} else if (model.includes('text-embedding-3')) {
|
||||
return EMBEDDING_DIMENSIONS;
|
||||
} else if (model === 'fallback' || model === 'simple-hash') {
|
||||
return FALLBACK_DIMENSIONS;
|
||||
}
|
||||
// Default to OpenAI dimensions
|
||||
return EMBEDDING_DIMENSIONS;
|
||||
};
|
||||
|
||||
// Initialize the OpenAI client with smartRouting configuration
|
||||
const getOpenAIClient = () => {
|
||||
const config = getOpenAIConfig();
|
||||
return new OpenAI({
|
||||
apiKey: config.apiKey, // Get API key from smartRouting settings or environment variables
|
||||
baseURL: config.baseURL, // Get base URL from smartRouting settings or fallback to default
|
||||
});
|
||||
};
|
||||
|
||||
/**
|
||||
* Generate text embedding using OpenAI's embedding model
|
||||
*
|
||||
* NOTE: embeddings are 1536 dimensions by default.
|
||||
* If you previously used the fallback implementation (100 dimensions),
|
||||
* you may need to rebuild your vector database indices after switching.
|
||||
*
|
||||
* @param text Text to generate embeddings for
|
||||
* @returns Promise with vector embedding as number array
|
||||
*/
|
||||
async function generateEmbedding(text: string): Promise<number[]> {
|
||||
try {
|
||||
const config = getOpenAIConfig();
|
||||
const openai = getOpenAIClient();
|
||||
|
||||
// Check if API key is configured
|
||||
if (!openai.apiKey) {
|
||||
console.warn('OpenAI API key is not configured. Using fallback embedding method.');
|
||||
return generateFallbackEmbedding(text);
|
||||
}
|
||||
|
||||
// Truncate text if it's too long (OpenAI has token limits)
|
||||
const truncatedText = text.length > 8000 ? text.substring(0, 8000) : text;
|
||||
|
||||
// Call OpenAI's embeddings API
|
||||
const response = await openai.embeddings.create({
|
||||
model: config.embeddingModel, // Modern model with better performance
|
||||
input: truncatedText,
|
||||
});
|
||||
|
||||
// Return the embedding
|
||||
return response.data[0].embedding;
|
||||
} catch (error) {
|
||||
console.error('Error generating embedding:', error);
|
||||
console.warn('Falling back to simple embedding method');
|
||||
return generateFallbackEmbedding(text);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Fallback embedding function using a simple approach when OpenAI API is unavailable
|
||||
* @param text Text to generate embeddings for
|
||||
* @returns Vector embedding as number array
|
||||
*/
|
||||
function generateFallbackEmbedding(text: string): number[] {
|
||||
const words = text.toLowerCase().split(/\s+/);
|
||||
const vocabulary = [
|
||||
'search',
|
||||
'find',
|
||||
'get',
|
||||
'fetch',
|
||||
'retrieve',
|
||||
'query',
|
||||
'map',
|
||||
'location',
|
||||
'weather',
|
||||
'file',
|
||||
'directory',
|
||||
'email',
|
||||
'message',
|
||||
'send',
|
||||
'create',
|
||||
'update',
|
||||
'delete',
|
||||
'browser',
|
||||
'web',
|
||||
'page',
|
||||
'click',
|
||||
'navigate',
|
||||
'screenshot',
|
||||
'automation',
|
||||
'database',
|
||||
'table',
|
||||
'record',
|
||||
'insert',
|
||||
'select',
|
||||
'schema',
|
||||
'data',
|
||||
'image',
|
||||
'photo',
|
||||
'video',
|
||||
'media',
|
||||
'upload',
|
||||
'download',
|
||||
'convert',
|
||||
'text',
|
||||
'document',
|
||||
'pdf',
|
||||
'excel',
|
||||
'word',
|
||||
'format',
|
||||
'parse',
|
||||
'api',
|
||||
'rest',
|
||||
'http',
|
||||
'request',
|
||||
'response',
|
||||
'json',
|
||||
'xml',
|
||||
'time',
|
||||
'date',
|
||||
'calendar',
|
||||
'schedule',
|
||||
'reminder',
|
||||
'clock',
|
||||
'math',
|
||||
'calculate',
|
||||
'number',
|
||||
'sum',
|
||||
'average',
|
||||
'statistics',
|
||||
'user',
|
||||
'account',
|
||||
'login',
|
||||
'auth',
|
||||
'permission',
|
||||
'role',
|
||||
];
|
||||
|
||||
// Create vector with fallback dimensions
|
||||
const vector = new Array(FALLBACK_DIMENSIONS).fill(0);
|
||||
|
||||
words.forEach((word) => {
|
||||
const index = vocabulary.indexOf(word);
|
||||
if (index >= 0 && index < vector.length) {
|
||||
vector[index] += 1;
|
||||
}
|
||||
// Add some randomness based on word hash
|
||||
const hash = word.split('').reduce((a, b) => a + b.charCodeAt(0), 0);
|
||||
vector[hash % vector.length] += 0.1;
|
||||
});
|
||||
|
||||
// Normalize the vector
|
||||
const magnitude = Math.sqrt(vector.reduce((sum, val) => sum + val * val, 0));
|
||||
if (magnitude > 0) {
|
||||
return vector.map((val) => val / magnitude);
|
||||
}
|
||||
|
||||
return vector;
|
||||
}
|
||||
|
||||
/**
|
||||
* Save tool information as vector embeddings
|
||||
* @param serverName Server name
|
||||
* @param tools Array of tools to save
|
||||
*/
|
||||
export const saveToolsAsVectorEmbeddings = async (
|
||||
serverName: string,
|
||||
tools: ToolInfo[],
|
||||
): Promise<void> => {
|
||||
try {
|
||||
const config = getOpenAIConfig();
|
||||
const vectorRepository = getRepositoryFactory(
|
||||
'vectorEmbeddings',
|
||||
)() as VectorEmbeddingRepository;
|
||||
|
||||
for (const tool of tools) {
|
||||
// Create searchable text from tool information
|
||||
const searchableText = [
|
||||
tool.name,
|
||||
tool.description,
|
||||
// Include input schema properties if available
|
||||
...(tool.inputSchema && typeof tool.inputSchema === 'object'
|
||||
? Object.keys(tool.inputSchema).filter((key) => key !== 'type' && key !== 'properties')
|
||||
: []),
|
||||
// Include schema property names if available
|
||||
...(tool.inputSchema &&
|
||||
tool.inputSchema.properties &&
|
||||
typeof tool.inputSchema.properties === 'object'
|
||||
? Object.keys(tool.inputSchema.properties)
|
||||
: []),
|
||||
]
|
||||
.filter(Boolean)
|
||||
.join(' ');
|
||||
|
||||
try {
|
||||
// Generate embedding
|
||||
const embedding = await generateEmbedding(searchableText);
|
||||
|
||||
// Check database compatibility before saving
|
||||
await checkDatabaseVectorDimensions(embedding.length);
|
||||
|
||||
// Save embedding
|
||||
await vectorRepository.saveEmbedding(
|
||||
'tool',
|
||||
`${serverName}:${tool.name}`,
|
||||
searchableText,
|
||||
embedding,
|
||||
{
|
||||
serverName,
|
||||
toolName: tool.name,
|
||||
description: tool.description,
|
||||
inputSchema: tool.inputSchema,
|
||||
},
|
||||
config.embeddingModel, // Store the model used for this embedding
|
||||
);
|
||||
} catch (toolError) {
|
||||
console.error(`Error processing tool ${tool.name} for server ${serverName}:`, toolError);
|
||||
// Continue with the next tool rather than failing the whole batch
|
||||
}
|
||||
}
|
||||
|
||||
console.log(`Saved ${tools.length} tool embeddings for server: ${serverName}`);
|
||||
} catch (error) {
|
||||
console.error(`Error saving tool embeddings for server ${serverName}:`, error);
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Search for tools using vector similarity
|
||||
* @param query Search query text
|
||||
* @param limit Maximum number of results to return
|
||||
* @param threshold Similarity threshold (0-1)
|
||||
* @param serverNames Optional array of server names to filter by
|
||||
*/
|
||||
export const searchToolsByVector = async (
|
||||
query: string,
|
||||
limit: number = 10,
|
||||
threshold: number = 0.7,
|
||||
serverNames?: string[],
|
||||
): Promise<
|
||||
Array<{
|
||||
serverName: string;
|
||||
toolName: string;
|
||||
description: string;
|
||||
inputSchema: any;
|
||||
similarity: number;
|
||||
searchableText: string;
|
||||
}>
|
||||
> => {
|
||||
try {
|
||||
const vectorRepository = getRepositoryFactory(
|
||||
'vectorEmbeddings',
|
||||
)() as VectorEmbeddingRepository;
|
||||
|
||||
// Search by text using vector similarity
|
||||
const results = await vectorRepository.searchByText(
|
||||
query,
|
||||
generateEmbedding,
|
||||
limit,
|
||||
threshold,
|
||||
['tool'],
|
||||
);
|
||||
|
||||
// Filter by server names if provided
|
||||
let filteredResults = results;
|
||||
if (serverNames && serverNames.length > 0) {
|
||||
filteredResults = results.filter((result) => {
|
||||
if (typeof result.embedding.metadata === 'string') {
|
||||
try {
|
||||
const parsedMetadata = JSON.parse(result.embedding.metadata);
|
||||
return serverNames.includes(parsedMetadata.serverName);
|
||||
} catch (error) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
});
|
||||
}
|
||||
|
||||
// Transform results to a more useful format
|
||||
return filteredResults.map((result) => {
|
||||
// Check if we have metadata as a string that needs to be parsed
|
||||
if (result.embedding?.metadata && typeof result.embedding.metadata === 'string') {
|
||||
try {
|
||||
// Parse the metadata string as JSON
|
||||
const parsedMetadata = JSON.parse(result.embedding.metadata);
|
||||
|
||||
if (parsedMetadata.serverName && parsedMetadata.toolName) {
|
||||
// We have properly structured metadata
|
||||
return {
|
||||
serverName: parsedMetadata.serverName,
|
||||
toolName: parsedMetadata.toolName,
|
||||
description: parsedMetadata.description || '',
|
||||
inputSchema: parsedMetadata.inputSchema || {},
|
||||
similarity: result.similarity,
|
||||
searchableText: result.embedding.text_content,
|
||||
};
|
||||
}
|
||||
} catch (error) {
|
||||
console.error('Error parsing metadata string:', error);
|
||||
// Fall through to the extraction logic below
|
||||
}
|
||||
}
|
||||
|
||||
// Extract tool info from text_content if metadata is not available or parsing failed
|
||||
const textContent = result.embedding?.text_content || '';
|
||||
|
||||
// Extract toolName (first word of text_content)
|
||||
const toolNameMatch = textContent.match(/^(\S+)/);
|
||||
const toolName = toolNameMatch ? toolNameMatch[1] : '';
|
||||
|
||||
// Extract serverName from toolName if it follows the pattern "serverName_toolPart"
|
||||
const serverNameMatch = toolName.match(/^([^_]+)_/);
|
||||
const serverName = serverNameMatch ? serverNameMatch[1] : 'unknown';
|
||||
|
||||
// Extract description (everything after the first word)
|
||||
const description = textContent.replace(/^\S+\s*/, '').trim();
|
||||
|
||||
return {
|
||||
serverName,
|
||||
toolName,
|
||||
description,
|
||||
inputSchema: {},
|
||||
similarity: result.similarity,
|
||||
searchableText: textContent,
|
||||
};
|
||||
});
|
||||
} catch (error) {
|
||||
console.error('Error searching tools by vector:', error);
|
||||
return [];
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Get all available tools in vector database
|
||||
* @param serverNames Optional array of server names to filter by
|
||||
*/
|
||||
export const getAllVectorizedTools = async (
|
||||
serverNames?: string[],
|
||||
): Promise<
|
||||
Array<{
|
||||
serverName: string;
|
||||
toolName: string;
|
||||
description: string;
|
||||
inputSchema: any;
|
||||
}>
|
||||
> => {
|
||||
try {
|
||||
const config = getOpenAIConfig();
|
||||
const vectorRepository = getRepositoryFactory(
|
||||
'vectorEmbeddings',
|
||||
)() as VectorEmbeddingRepository;
|
||||
|
||||
// Try to determine what dimension our database is using
|
||||
let dimensionsToUse = getDimensionsForModel(config.embeddingModel); // Default based on the model selected
|
||||
|
||||
try {
|
||||
const result = await getAppDataSource().query(`
|
||||
SELECT atttypmod as dimensions
|
||||
FROM pg_attribute
|
||||
WHERE attrelid = 'vector_embeddings'::regclass
|
||||
AND attname = 'embedding'
|
||||
`);
|
||||
|
||||
if (result && result.length > 0 && result[0].dimensions) {
|
||||
const rawValue = result[0].dimensions;
|
||||
|
||||
if (rawValue === -1) {
|
||||
// No type modifier specified
|
||||
dimensionsToUse = getDimensionsForModel(config.embeddingModel);
|
||||
} else {
|
||||
// For this version of pgvector, atttypmod stores the dimension value directly
|
||||
dimensionsToUse = rawValue;
|
||||
}
|
||||
}
|
||||
} catch (error: any) {
|
||||
console.warn('Could not determine vector dimensions from database:', error?.message);
|
||||
}
|
||||
|
||||
// Get all tool embeddings
|
||||
const results = await vectorRepository.searchSimilar(
|
||||
new Array(dimensionsToUse).fill(0), // Zero vector with dimensions matching the database
|
||||
1000, // Large limit
|
||||
-1, // No threshold (get all)
|
||||
['tool'],
|
||||
);
|
||||
|
||||
// Filter by server names if provided
|
||||
let filteredResults = results;
|
||||
if (serverNames && serverNames.length > 0) {
|
||||
filteredResults = results.filter((result) => {
|
||||
if (typeof result.embedding.metadata === 'string') {
|
||||
try {
|
||||
const parsedMetadata = JSON.parse(result.embedding.metadata);
|
||||
return serverNames.includes(parsedMetadata.serverName);
|
||||
} catch (error) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
});
|
||||
}
|
||||
|
||||
// Transform results
|
||||
return filteredResults.map((result) => {
|
||||
if (typeof result.embedding.metadata === 'string') {
|
||||
try {
|
||||
const parsedMetadata = JSON.parse(result.embedding.metadata);
|
||||
return {
|
||||
serverName: parsedMetadata.serverName,
|
||||
toolName: parsedMetadata.toolName,
|
||||
description: parsedMetadata.description,
|
||||
inputSchema: parsedMetadata.inputSchema,
|
||||
};
|
||||
} catch (error) {
|
||||
console.error('Error parsing metadata string:', error);
|
||||
return {
|
||||
serverName: 'unknown',
|
||||
toolName: 'unknown',
|
||||
description: '',
|
||||
inputSchema: {},
|
||||
};
|
||||
}
|
||||
}
|
||||
return {
|
||||
serverName: 'unknown',
|
||||
toolName: 'unknown',
|
||||
description: '',
|
||||
inputSchema: {},
|
||||
};
|
||||
});
|
||||
} catch (error) {
|
||||
console.error('Error getting all vectorized tools:', error);
|
||||
return [];
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Remove tool embeddings for a server
|
||||
* @param serverName Server name
|
||||
*/
|
||||
export const removeServerToolEmbeddings = async (serverName: string): Promise<void> => {
|
||||
try {
|
||||
const vectorRepository = getRepositoryFactory(
|
||||
'vectorEmbeddings',
|
||||
)() as VectorEmbeddingRepository;
|
||||
|
||||
// Note: This would require adding a delete method to VectorEmbeddingRepository
|
||||
// For now, we'll log that this functionality needs to be implemented
|
||||
console.log(`TODO: Remove tool embeddings for server: ${serverName}`);
|
||||
} catch (error) {
|
||||
console.error(`Error removing tool embeddings for server ${serverName}:`, error);
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Sync all server tools embeddings when smart routing is first enabled
|
||||
* This function will scan all currently connected servers and save their tools as vector embeddings
|
||||
*/
|
||||
export const syncAllServerToolsEmbeddings = async (): Promise<void> => {
|
||||
try {
|
||||
console.log('Starting synchronization of all server tools embeddings...');
|
||||
|
||||
// Import getServersInfo to get all server information
|
||||
const { getServersInfo } = await import('./mcpService.js');
|
||||
|
||||
const servers = getServersInfo();
|
||||
let totalToolsSynced = 0;
|
||||
let serversSynced = 0;
|
||||
|
||||
for (const server of servers) {
|
||||
if (server.status === 'connected' && server.tools && server.tools.length > 0) {
|
||||
try {
|
||||
console.log(`Syncing tools for server: ${server.name} (${server.tools.length} tools)`);
|
||||
await saveToolsAsVectorEmbeddings(server.name, server.tools);
|
||||
totalToolsSynced += server.tools.length;
|
||||
serversSynced++;
|
||||
} catch (error) {
|
||||
console.error(`Failed to sync tools for server ${server.name}:`, error);
|
||||
}
|
||||
} else if (server.status === 'connected' && (!server.tools || server.tools.length === 0)) {
|
||||
console.log(`Server ${server.name} is connected but has no tools to sync`);
|
||||
} else {
|
||||
console.log(`Skipping server ${server.name} (status: ${server.status})`);
|
||||
}
|
||||
}
|
||||
|
||||
console.log(
|
||||
`Smart routing tools sync completed: synced ${totalToolsSynced} tools from ${serversSynced} servers`,
|
||||
);
|
||||
} catch (error) {
|
||||
console.error('Error during smart routing tools synchronization:', error);
|
||||
throw error;
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Check database vector dimensions and ensure compatibility
|
||||
* @param dimensionsNeeded The number of dimensions required
|
||||
* @returns Promise that resolves when check is complete
|
||||
*/
|
||||
async function checkDatabaseVectorDimensions(dimensionsNeeded: number): Promise<void> {
|
||||
try {
|
||||
// First check if database is initialized
|
||||
if (!getAppDataSource().isInitialized) {
|
||||
console.info('Database not initialized, initializing...');
|
||||
await initializeDatabase();
|
||||
}
|
||||
|
||||
// Check current vector dimension in the database
|
||||
// First try to get vector type info directly
|
||||
let vectorTypeInfo;
|
||||
try {
|
||||
vectorTypeInfo = await getAppDataSource().query(`
|
||||
SELECT
|
||||
atttypmod,
|
||||
format_type(atttypid, atttypmod) as formatted_type
|
||||
FROM pg_attribute
|
||||
WHERE attrelid = 'vector_embeddings'::regclass
|
||||
AND attname = 'embedding'
|
||||
`);
|
||||
} catch (error) {
|
||||
console.warn('Could not get vector type info, falling back to atttypmod query');
|
||||
}
|
||||
|
||||
// Fallback to original query
|
||||
const result = await getAppDataSource().query(`
|
||||
SELECT atttypmod as dimensions
|
||||
FROM pg_attribute
|
||||
WHERE attrelid = 'vector_embeddings'::regclass
|
||||
AND attname = 'embedding'
|
||||
`);
|
||||
|
||||
let currentDimensions = 0;
|
||||
|
||||
// Parse dimensions from result
|
||||
if (result && result.length > 0 && result[0].dimensions) {
|
||||
if (vectorTypeInfo && vectorTypeInfo.length > 0) {
|
||||
// Try to extract dimensions from formatted type like "vector(1024)"
|
||||
const match = vectorTypeInfo[0].formatted_type?.match(/vector\((\d+)\)/);
|
||||
if (match) {
|
||||
currentDimensions = parseInt(match[1]);
|
||||
}
|
||||
}
|
||||
|
||||
// If we couldn't extract from formatted type, use the atttypmod value directly
|
||||
if (currentDimensions === 0) {
|
||||
const rawValue = result[0].dimensions;
|
||||
|
||||
if (rawValue === -1) {
|
||||
// No type modifier specified
|
||||
currentDimensions = 0;
|
||||
} else {
|
||||
// For this version of pgvector, atttypmod stores the dimension value directly
|
||||
currentDimensions = rawValue;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Also check the dimensions stored in actual records for validation
|
||||
try {
|
||||
const recordCheck = await getAppDataSource().query(`
|
||||
SELECT dimensions, model, COUNT(*) as count
|
||||
FROM vector_embeddings
|
||||
GROUP BY dimensions, model
|
||||
ORDER BY count DESC
|
||||
LIMIT 5
|
||||
`);
|
||||
|
||||
if (recordCheck && recordCheck.length > 0) {
|
||||
// If we couldn't determine dimensions from schema, use the most common dimension from records
|
||||
if (currentDimensions === 0 && recordCheck[0].dimensions) {
|
||||
currentDimensions = recordCheck[0].dimensions;
|
||||
}
|
||||
}
|
||||
} catch (error) {
|
||||
console.warn('Could not check dimensions from actual records:', error);
|
||||
}
|
||||
|
||||
// If no dimensions are set or they don't match what we need, handle the mismatch
|
||||
if (currentDimensions === 0 || currentDimensions !== dimensionsNeeded) {
|
||||
console.log(
|
||||
`Vector dimensions mismatch: database=${currentDimensions}, needed=${dimensionsNeeded}`,
|
||||
);
|
||||
|
||||
if (currentDimensions === 0) {
|
||||
console.log('Setting up vector dimensions for the first time...');
|
||||
} else {
|
||||
console.log('Dimension mismatch detected. Clearing existing incompatible vector data...');
|
||||
|
||||
// Clear all existing vector embeddings with mismatched dimensions
|
||||
await clearMismatchedVectorData(dimensionsNeeded);
|
||||
}
|
||||
|
||||
// Drop any existing indices first
|
||||
await getAppDataSource().query(`DROP INDEX IF EXISTS idx_vector_embeddings_embedding;`);
|
||||
|
||||
// Alter the column type with the new dimensions
|
||||
await getAppDataSource().query(`
|
||||
ALTER TABLE vector_embeddings
|
||||
ALTER COLUMN embedding TYPE vector(${dimensionsNeeded});
|
||||
`);
|
||||
|
||||
// Create a new index with better error handling
|
||||
try {
|
||||
await getAppDataSource().query(`
|
||||
CREATE INDEX idx_vector_embeddings_embedding
|
||||
ON vector_embeddings USING ivfflat (embedding vector_cosine_ops) WITH (lists = 100);
|
||||
`);
|
||||
} catch (indexError: any) {
|
||||
// If the index already exists (code 42P07) or there's a duplicate key constraint (code 23505),
|
||||
// it's not a critical error as the index is already there
|
||||
if (indexError.code === '42P07' || indexError.code === '23505') {
|
||||
console.log('Index already exists, continuing...');
|
||||
} else {
|
||||
console.warn('Warning: Failed to create index, but continuing:', indexError.message);
|
||||
}
|
||||
}
|
||||
|
||||
console.log(`Successfully configured vector dimensions to ${dimensionsNeeded}`);
|
||||
}
|
||||
} catch (error: any) {
|
||||
console.error('Error checking/updating vector dimensions:', error);
|
||||
throw new Error(`Vector dimension check failed: ${error?.message || 'Unknown error'}`);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Clear vector embeddings with mismatched dimensions
|
||||
* @param expectedDimensions The expected dimensions
|
||||
* @returns Promise that resolves when cleanup is complete
|
||||
*/
|
||||
async function clearMismatchedVectorData(expectedDimensions: number): Promise<void> {
|
||||
try {
|
||||
console.log(
|
||||
`Clearing vector embeddings with dimensions different from ${expectedDimensions}...`,
|
||||
);
|
||||
|
||||
// Delete all embeddings that don't match the expected dimensions
|
||||
await getAppDataSource().query(
|
||||
`
|
||||
DELETE FROM vector_embeddings
|
||||
WHERE dimensions != $1
|
||||
`,
|
||||
[expectedDimensions],
|
||||
);
|
||||
|
||||
console.log('Successfully cleared mismatched vector embeddings');
|
||||
} catch (error: any) {
|
||||
console.error('Error clearing mismatched vector data:', error);
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user