feat: introduce auto routing (#122)

This commit is contained in:
samanhappy
2025-05-25 21:09:47 +08:00
committed by GitHub
parent 27b7e766af
commit 9e5c2b5525
24 changed files with 2864 additions and 26 deletions

View File

@@ -9,6 +9,7 @@ import { loadSettings, saveSettings, expandEnvVars } from '../config/index.js';
import config from '../config/index.js';
import { getGroup } from './sseService.js';
import { getServersInGroup } from './groupService.js';
import { saveToolsAsVectorEmbeddings, searchToolsByVector } from './vectorSearchService.js';
const servers: { [sessionId: string]: Server } = {};
@@ -99,14 +100,21 @@ export const initializeClientsFromSettings = (isInit: boolean): ServerInfo[] =>
// Add UV_DEFAULT_INDEX from settings if available (for Python packages)
const settings = loadSettings(); // Add UV_DEFAULT_INDEX from settings if available (for Python packages)
if (settings.systemConfig?.install?.pythonIndexUrl && conf.command === 'uvx') {
if (
settings.systemConfig?.install?.pythonIndexUrl &&
(conf.command === 'uvx' || conf.command === 'uv' || conf.command === 'python')
) {
env['UV_DEFAULT_INDEX'] = settings.systemConfig.install.pythonIndexUrl;
}
// Add npm_config_registry from settings if available (for NPM packages)
if (
settings.systemConfig?.install?.npmRegistry &&
(conf.command === 'npm' || conf.command === 'npx')
(conf.command === 'npm' ||
conf.command === 'npx' ||
conf.command === 'pnpm' ||
conf.command === 'yarn' ||
conf.command === 'node')
) {
env['npm_config_registry'] = settings.systemConfig.install.npmRegistry;
}
@@ -168,6 +176,22 @@ export const initializeClientsFromSettings = (isInit: boolean): ServerInfo[] =>
}));
serverInfo.status = 'connected';
serverInfo.error = null;
// Save tools as vector embeddings for search (only when smart routing is enabled)
if (serverInfo.tools.length > 0) {
try {
const settings = loadSettings();
const smartRoutingEnabled = settings.systemConfig?.smartRouting?.enabled || false;
if (smartRoutingEnabled) {
console.log(
`Smart routing enabled - saving vector embeddings for server ${name}`,
);
saveToolsAsVectorEmbeddings(name, serverInfo.tools);
}
} catch (vectorError) {
console.warn(`Failed to save vector embeddings for server ${name}:`, vectorError);
}
}
})
.catch((error) => {
console.error(
@@ -258,7 +282,6 @@ export const addServer = async (
return { success: false, message: 'Failed to save settings' };
}
registerAllTools(false);
return { success: true, message: 'Server added successfully' };
} catch (error) {
console.error(`Failed to add server: ${name}`, error);
@@ -369,6 +392,74 @@ const handleListToolsRequest = async (_: any, extra: any) => {
const sessionId = extra.sessionId || '';
const group = getGroup(sessionId);
console.log(`Handling ListToolsRequest for group: ${group}`);
// Special handling for $smart group to return special tools
if (group === '$smart') {
return {
tools: [
{
name: 'search_tools',
description: (() => {
// Get info about available servers
const availableServers = serverInfos.filter(
(server) => server.status === 'connected' && server.enabled !== false,
);
// Create simple server information with only server names
const serversList = availableServers
.map((server) => {
return `${server.name}`;
})
.join(', ');
return `STEP 1 of 2: Use this tool FIRST to discover and search for relevant tools across all available servers. This tool and call_tool work together as a two-step process: 1) search_tools to find what you need, 2) call_tool to execute it.
For optimal results, use specific queries matching your exact needs. Call this tool multiple times with different queries for different parts of complex tasks. Example queries: "image generation tools", "code review tools", "data analysis", "translation capabilities", etc. Results are sorted by relevance using vector similarity.
After finding relevant tools, you MUST use the call_tool to actually execute them. The search_tools only finds tools - it doesn't execute them.
Available servers: ${serversList}`;
})(),
inputSchema: {
type: 'object',
properties: {
query: {
type: 'string',
description:
'The search query to find relevant tools. Be specific and descriptive about the task you want to accomplish.',
},
limit: {
type: 'integer',
description:
'Maximum number of results to return. Use higher values (20-30) for broad searches and lower values (5-10) for specific searches.',
default: 10,
},
},
required: ['query'],
},
},
{
name: 'call_tool',
description:
"STEP 2 of 2: Use this tool AFTER search_tools to actually execute/invoke any tool you found. This is the execution step - search_tools finds tools, call_tool runs them.\n\nWorkflow: search_tools → examine results → call_tool with the chosen tool name and required arguments.\n\nIMPORTANT: Always check the tool's inputSchema from search_tools results before invoking to ensure you provide the correct arguments. The search results will show you exactly what parameters each tool expects.",
inputSchema: {
type: 'object',
properties: {
toolName: {
type: 'string',
description: 'The exact name of the tool to invoke (from search_tools results)',
},
arguments: {
type: 'object',
description:
'The arguments to pass to the tool based on its inputSchema (optional if tool requires no arguments)',
},
},
required: ['toolName'],
},
},
],
};
}
const allServerInfos = serverInfos.filter((serverInfo) => {
if (serverInfo.enabled === false) return false;
if (!group) return true;
@@ -392,6 +483,143 @@ const handleListToolsRequest = async (_: any, extra: any) => {
const handleCallToolRequest = async (request: any, extra: any) => {
console.log(`Handling CallToolRequest for tool: ${request.params.name}`);
try {
// Special handling for agent group tools
if (request.params.name === 'search_tools') {
const { query, limit = 10 } = request.params.arguments || {};
if (!query || typeof query !== 'string') {
throw new Error('Query parameter is required and must be a string');
}
const limitNum = Math.min(Math.max(parseInt(String(limit)) || 10, 1), 100);
// Dynamically adjust threshold based on query characteristics
let thresholdNum = 0.3; // Default threshold
// For more general queries, use a lower threshold to get more diverse results
if (query.length < 10 || query.split(' ').length <= 2) {
thresholdNum = 0.2;
}
// For very specific queries, use a higher threshold for more precise results
if (query.length > 30 || query.includes('specific') || query.includes('exact')) {
thresholdNum = 0.4;
}
console.log(`Using similarity threshold: ${thresholdNum} for query: "${query}"`);
const servers = undefined; // No server filtering
const searchResults = await searchToolsByVector(query, limitNum, thresholdNum, servers);
console.log(`Search results: ${JSON.stringify(searchResults)}`);
// Find actual tool information from serverInfos by serverName and toolName
const tools = searchResults.map((result) => {
// Find the server in serverInfos
const server = serverInfos.find(
(serverInfo) =>
serverInfo.name === result.serverName &&
serverInfo.status === 'connected' &&
serverInfo.enabled !== false,
);
if (server && server.tools && server.tools.length > 0) {
// Find the tool in server.tools
const actualTool = server.tools.find((tool) => tool.name === result.toolName);
if (actualTool) {
// Return the actual tool info from serverInfos
return actualTool;
}
}
// Fallback to search result if server or tool not found
return {
name: result.toolName,
description: result.description || '',
inputSchema: result.inputSchema || {},
};
});
// Add usage guidance to the response
const response = {
tools,
metadata: {
query: query,
threshold: thresholdNum,
totalResults: tools.length,
guideline:
tools.length > 0
? "Found relevant tools. If these tools don't match exactly what you need, try another search with more specific keywords."
: 'No tools found. Try broadening your search or using different keywords.',
nextSteps:
tools.length > 0
? 'To use a tool, call call_tool with the toolName and required arguments.'
: 'Consider searching for related capabilities or more general terms.',
},
};
// Return in the same format as handleListToolsRequest
return {
content: [
{
type: 'text',
text: JSON.stringify(response),
},
],
};
}
// Special handling for call_tool
if (request.params.name === 'call_tool') {
const { toolName, arguments: toolArgs = {} } = request.params.arguments || {};
if (!toolName) {
throw new Error('toolName parameter is required');
}
// arguments parameter is now optional
let targetServerInfo: ServerInfo | undefined;
// Find the first server that has this tool
targetServerInfo = serverInfos.find(
(serverInfo) =>
serverInfo.status === 'connected' &&
serverInfo.enabled !== false &&
serverInfo.tools.some((tool) => tool.name === toolName),
);
if (!targetServerInfo) {
throw new Error(`No available servers found with tool: ${toolName}`);
}
// Check if the tool exists on the server
const toolExists = targetServerInfo.tools.some((tool) => tool.name === toolName);
if (!toolExists) {
throw new Error(`Tool '${toolName}' not found on server '${targetServerInfo.name}'`);
}
// Call the tool on the target server
const client = targetServerInfo.client;
if (!client) {
throw new Error(`Client not found for server: ${targetServerInfo.name}`);
}
// Use toolArgs if it has properties, otherwise fallback to request.params.arguments
const finalArgs =
toolArgs && Object.keys(toolArgs).length > 0 ? toolArgs : request.params.arguments || {};
console.log(
`Invoking tool '${toolName}' on server '${targetServerInfo.name}' with arguments: ${JSON.stringify(finalArgs)}`,
);
const result = await client.callTool({
name: toolName,
arguments: finalArgs,
});
console.log(`Tool invocation result: ${JSON.stringify(result)}`);
return result;
}
// Regular tool handling
const serverInfo = getServerByTool(request.params.name);
if (!serverInfo) {
throw new Error(`Server not found: ${request.params.name}`);

View File

@@ -0,0 +1,706 @@
import { getRepositoryFactory } from '../db/index.js';
import { VectorEmbeddingRepository } from '../db/repositories/index.js';
import { ToolInfo } from '../types/index.js';
import { getAppDataSource, initializeDatabase } from '../db/connection.js';
import { loadSettings } from '../config/index.js';
import OpenAI from 'openai';
// Get OpenAI configuration from smartRouting settings or fallback to environment variables
const getOpenAIConfig = () => {
try {
const settings = loadSettings();
const smartRouting = settings.systemConfig?.smartRouting;
return {
apiKey: smartRouting?.openaiApiKey || process.env.OPENAI_API_KEY,
baseURL:
smartRouting?.openaiApiBaseUrl ||
process.env.OPENAI_API_BASE_URL ||
'https://api.openai.com/v1',
embeddingModel:
smartRouting?.openaiApiEmbeddingModel ||
process.env.OPENAI_API_EMBEDDING_MODEL ||
'text-embedding-3-small',
};
} catch (error) {
console.warn(
'Failed to load smartRouting settings, falling back to environment variables:',
error,
);
return {
apiKey: '',
baseURL: 'https://api.openai.com/v1',
embeddingModel: 'text-embedding-3-small',
};
}
};
// Environment variables for embedding configuration
const EMBEDDING_ENV = {
// The embedding model to use - default to OpenAI but allow BAAI/BGE models
MODEL: process.env.EMBEDDING_MODEL || getOpenAIConfig().embeddingModel,
// Detect if using a BGE model from the environment variable
IS_BGE_MODEL: !!(process.env.EMBEDDING_MODEL && process.env.EMBEDDING_MODEL.includes('bge')),
};
// Constants for embedding models
const EMBEDDING_DIMENSIONS = 1536; // OpenAI's text-embedding-3-small outputs 1536 dimensions
const BGE_DIMENSIONS = 1024; // BAAI/bge-m3 outputs 1024 dimensions
const FALLBACK_DIMENSIONS = 100; // Fallback implementation uses 100 dimensions
// Get dimensions for a model
const getDimensionsForModel = (model: string): number => {
if (model.includes('bge-m3')) {
return BGE_DIMENSIONS;
} else if (model.includes('text-embedding-3')) {
return EMBEDDING_DIMENSIONS;
} else if (model === 'fallback' || model === 'simple-hash') {
return FALLBACK_DIMENSIONS;
}
// Default to OpenAI dimensions
return EMBEDDING_DIMENSIONS;
};
// Initialize the OpenAI client with smartRouting configuration
const getOpenAIClient = () => {
const config = getOpenAIConfig();
return new OpenAI({
apiKey: config.apiKey, // Get API key from smartRouting settings or environment variables
baseURL: config.baseURL, // Get base URL from smartRouting settings or fallback to default
});
};
/**
* Generate text embedding using OpenAI's embedding model
*
* NOTE: embeddings are 1536 dimensions by default.
* If you previously used the fallback implementation (100 dimensions),
* you may need to rebuild your vector database indices after switching.
*
* @param text Text to generate embeddings for
* @returns Promise with vector embedding as number array
*/
async function generateEmbedding(text: string): Promise<number[]> {
try {
const config = getOpenAIConfig();
const openai = getOpenAIClient();
// Check if API key is configured
if (!openai.apiKey) {
console.warn('OpenAI API key is not configured. Using fallback embedding method.');
return generateFallbackEmbedding(text);
}
// Truncate text if it's too long (OpenAI has token limits)
const truncatedText = text.length > 8000 ? text.substring(0, 8000) : text;
// Call OpenAI's embeddings API
const response = await openai.embeddings.create({
model: config.embeddingModel, // Modern model with better performance
input: truncatedText,
});
// Return the embedding
return response.data[0].embedding;
} catch (error) {
console.error('Error generating embedding:', error);
console.warn('Falling back to simple embedding method');
return generateFallbackEmbedding(text);
}
}
/**
* Fallback embedding function using a simple approach when OpenAI API is unavailable
* @param text Text to generate embeddings for
* @returns Vector embedding as number array
*/
function generateFallbackEmbedding(text: string): number[] {
const words = text.toLowerCase().split(/\s+/);
const vocabulary = [
'search',
'find',
'get',
'fetch',
'retrieve',
'query',
'map',
'location',
'weather',
'file',
'directory',
'email',
'message',
'send',
'create',
'update',
'delete',
'browser',
'web',
'page',
'click',
'navigate',
'screenshot',
'automation',
'database',
'table',
'record',
'insert',
'select',
'schema',
'data',
'image',
'photo',
'video',
'media',
'upload',
'download',
'convert',
'text',
'document',
'pdf',
'excel',
'word',
'format',
'parse',
'api',
'rest',
'http',
'request',
'response',
'json',
'xml',
'time',
'date',
'calendar',
'schedule',
'reminder',
'clock',
'math',
'calculate',
'number',
'sum',
'average',
'statistics',
'user',
'account',
'login',
'auth',
'permission',
'role',
];
// Create vector with fallback dimensions
const vector = new Array(FALLBACK_DIMENSIONS).fill(0);
words.forEach((word) => {
const index = vocabulary.indexOf(word);
if (index >= 0 && index < vector.length) {
vector[index] += 1;
}
// Add some randomness based on word hash
const hash = word.split('').reduce((a, b) => a + b.charCodeAt(0), 0);
vector[hash % vector.length] += 0.1;
});
// Normalize the vector
const magnitude = Math.sqrt(vector.reduce((sum, val) => sum + val * val, 0));
if (magnitude > 0) {
return vector.map((val) => val / magnitude);
}
return vector;
}
/**
* Save tool information as vector embeddings
* @param serverName Server name
* @param tools Array of tools to save
*/
export const saveToolsAsVectorEmbeddings = async (
serverName: string,
tools: ToolInfo[],
): Promise<void> => {
try {
const config = getOpenAIConfig();
const vectorRepository = getRepositoryFactory(
'vectorEmbeddings',
)() as VectorEmbeddingRepository;
for (const tool of tools) {
// Create searchable text from tool information
const searchableText = [
tool.name,
tool.description,
// Include input schema properties if available
...(tool.inputSchema && typeof tool.inputSchema === 'object'
? Object.keys(tool.inputSchema).filter((key) => key !== 'type' && key !== 'properties')
: []),
// Include schema property names if available
...(tool.inputSchema &&
tool.inputSchema.properties &&
typeof tool.inputSchema.properties === 'object'
? Object.keys(tool.inputSchema.properties)
: []),
]
.filter(Boolean)
.join(' ');
try {
// Generate embedding
const embedding = await generateEmbedding(searchableText);
// Check database compatibility before saving
await checkDatabaseVectorDimensions(embedding.length);
// Save embedding
await vectorRepository.saveEmbedding(
'tool',
`${serverName}:${tool.name}`,
searchableText,
embedding,
{
serverName,
toolName: tool.name,
description: tool.description,
inputSchema: tool.inputSchema,
},
config.embeddingModel, // Store the model used for this embedding
);
} catch (toolError) {
console.error(`Error processing tool ${tool.name} for server ${serverName}:`, toolError);
// Continue with the next tool rather than failing the whole batch
}
}
console.log(`Saved ${tools.length} tool embeddings for server: ${serverName}`);
} catch (error) {
console.error(`Error saving tool embeddings for server ${serverName}:`, error);
}
};
/**
* Search for tools using vector similarity
* @param query Search query text
* @param limit Maximum number of results to return
* @param threshold Similarity threshold (0-1)
* @param serverNames Optional array of server names to filter by
*/
export const searchToolsByVector = async (
query: string,
limit: number = 10,
threshold: number = 0.7,
serverNames?: string[],
): Promise<
Array<{
serverName: string;
toolName: string;
description: string;
inputSchema: any;
similarity: number;
searchableText: string;
}>
> => {
try {
const vectorRepository = getRepositoryFactory(
'vectorEmbeddings',
)() as VectorEmbeddingRepository;
// Search by text using vector similarity
const results = await vectorRepository.searchByText(
query,
generateEmbedding,
limit,
threshold,
['tool'],
);
// Filter by server names if provided
let filteredResults = results;
if (serverNames && serverNames.length > 0) {
filteredResults = results.filter((result) => {
if (typeof result.embedding.metadata === 'string') {
try {
const parsedMetadata = JSON.parse(result.embedding.metadata);
return serverNames.includes(parsedMetadata.serverName);
} catch (error) {
return false;
}
}
return false;
});
}
// Transform results to a more useful format
return filteredResults.map((result) => {
// Check if we have metadata as a string that needs to be parsed
if (result.embedding?.metadata && typeof result.embedding.metadata === 'string') {
try {
// Parse the metadata string as JSON
const parsedMetadata = JSON.parse(result.embedding.metadata);
if (parsedMetadata.serverName && parsedMetadata.toolName) {
// We have properly structured metadata
return {
serverName: parsedMetadata.serverName,
toolName: parsedMetadata.toolName,
description: parsedMetadata.description || '',
inputSchema: parsedMetadata.inputSchema || {},
similarity: result.similarity,
searchableText: result.embedding.text_content,
};
}
} catch (error) {
console.error('Error parsing metadata string:', error);
// Fall through to the extraction logic below
}
}
// Extract tool info from text_content if metadata is not available or parsing failed
const textContent = result.embedding?.text_content || '';
// Extract toolName (first word of text_content)
const toolNameMatch = textContent.match(/^(\S+)/);
const toolName = toolNameMatch ? toolNameMatch[1] : '';
// Extract serverName from toolName if it follows the pattern "serverName_toolPart"
const serverNameMatch = toolName.match(/^([^_]+)_/);
const serverName = serverNameMatch ? serverNameMatch[1] : 'unknown';
// Extract description (everything after the first word)
const description = textContent.replace(/^\S+\s*/, '').trim();
return {
serverName,
toolName,
description,
inputSchema: {},
similarity: result.similarity,
searchableText: textContent,
};
});
} catch (error) {
console.error('Error searching tools by vector:', error);
return [];
}
};
/**
* Get all available tools in vector database
* @param serverNames Optional array of server names to filter by
*/
export const getAllVectorizedTools = async (
serverNames?: string[],
): Promise<
Array<{
serverName: string;
toolName: string;
description: string;
inputSchema: any;
}>
> => {
try {
const config = getOpenAIConfig();
const vectorRepository = getRepositoryFactory(
'vectorEmbeddings',
)() as VectorEmbeddingRepository;
// Try to determine what dimension our database is using
let dimensionsToUse = getDimensionsForModel(config.embeddingModel); // Default based on the model selected
try {
const result = await getAppDataSource().query(`
SELECT atttypmod as dimensions
FROM pg_attribute
WHERE attrelid = 'vector_embeddings'::regclass
AND attname = 'embedding'
`);
if (result && result.length > 0 && result[0].dimensions) {
const rawValue = result[0].dimensions;
if (rawValue === -1) {
// No type modifier specified
dimensionsToUse = getDimensionsForModel(config.embeddingModel);
} else {
// For this version of pgvector, atttypmod stores the dimension value directly
dimensionsToUse = rawValue;
}
}
} catch (error: any) {
console.warn('Could not determine vector dimensions from database:', error?.message);
}
// Get all tool embeddings
const results = await vectorRepository.searchSimilar(
new Array(dimensionsToUse).fill(0), // Zero vector with dimensions matching the database
1000, // Large limit
-1, // No threshold (get all)
['tool'],
);
// Filter by server names if provided
let filteredResults = results;
if (serverNames && serverNames.length > 0) {
filteredResults = results.filter((result) => {
if (typeof result.embedding.metadata === 'string') {
try {
const parsedMetadata = JSON.parse(result.embedding.metadata);
return serverNames.includes(parsedMetadata.serverName);
} catch (error) {
return false;
}
}
return false;
});
}
// Transform results
return filteredResults.map((result) => {
if (typeof result.embedding.metadata === 'string') {
try {
const parsedMetadata = JSON.parse(result.embedding.metadata);
return {
serverName: parsedMetadata.serverName,
toolName: parsedMetadata.toolName,
description: parsedMetadata.description,
inputSchema: parsedMetadata.inputSchema,
};
} catch (error) {
console.error('Error parsing metadata string:', error);
return {
serverName: 'unknown',
toolName: 'unknown',
description: '',
inputSchema: {},
};
}
}
return {
serverName: 'unknown',
toolName: 'unknown',
description: '',
inputSchema: {},
};
});
} catch (error) {
console.error('Error getting all vectorized tools:', error);
return [];
}
};
/**
* Remove tool embeddings for a server
* @param serverName Server name
*/
export const removeServerToolEmbeddings = async (serverName: string): Promise<void> => {
try {
const vectorRepository = getRepositoryFactory(
'vectorEmbeddings',
)() as VectorEmbeddingRepository;
// Note: This would require adding a delete method to VectorEmbeddingRepository
// For now, we'll log that this functionality needs to be implemented
console.log(`TODO: Remove tool embeddings for server: ${serverName}`);
} catch (error) {
console.error(`Error removing tool embeddings for server ${serverName}:`, error);
}
};
/**
* Sync all server tools embeddings when smart routing is first enabled
* This function will scan all currently connected servers and save their tools as vector embeddings
*/
export const syncAllServerToolsEmbeddings = async (): Promise<void> => {
try {
console.log('Starting synchronization of all server tools embeddings...');
// Import getServersInfo to get all server information
const { getServersInfo } = await import('./mcpService.js');
const servers = getServersInfo();
let totalToolsSynced = 0;
let serversSynced = 0;
for (const server of servers) {
if (server.status === 'connected' && server.tools && server.tools.length > 0) {
try {
console.log(`Syncing tools for server: ${server.name} (${server.tools.length} tools)`);
await saveToolsAsVectorEmbeddings(server.name, server.tools);
totalToolsSynced += server.tools.length;
serversSynced++;
} catch (error) {
console.error(`Failed to sync tools for server ${server.name}:`, error);
}
} else if (server.status === 'connected' && (!server.tools || server.tools.length === 0)) {
console.log(`Server ${server.name} is connected but has no tools to sync`);
} else {
console.log(`Skipping server ${server.name} (status: ${server.status})`);
}
}
console.log(
`Smart routing tools sync completed: synced ${totalToolsSynced} tools from ${serversSynced} servers`,
);
} catch (error) {
console.error('Error during smart routing tools synchronization:', error);
throw error;
}
};
/**
* Check database vector dimensions and ensure compatibility
* @param dimensionsNeeded The number of dimensions required
* @returns Promise that resolves when check is complete
*/
async function checkDatabaseVectorDimensions(dimensionsNeeded: number): Promise<void> {
try {
// First check if database is initialized
if (!getAppDataSource().isInitialized) {
console.info('Database not initialized, initializing...');
await initializeDatabase();
}
// Check current vector dimension in the database
// First try to get vector type info directly
let vectorTypeInfo;
try {
vectorTypeInfo = await getAppDataSource().query(`
SELECT
atttypmod,
format_type(atttypid, atttypmod) as formatted_type
FROM pg_attribute
WHERE attrelid = 'vector_embeddings'::regclass
AND attname = 'embedding'
`);
} catch (error) {
console.warn('Could not get vector type info, falling back to atttypmod query');
}
// Fallback to original query
const result = await getAppDataSource().query(`
SELECT atttypmod as dimensions
FROM pg_attribute
WHERE attrelid = 'vector_embeddings'::regclass
AND attname = 'embedding'
`);
let currentDimensions = 0;
// Parse dimensions from result
if (result && result.length > 0 && result[0].dimensions) {
if (vectorTypeInfo && vectorTypeInfo.length > 0) {
// Try to extract dimensions from formatted type like "vector(1024)"
const match = vectorTypeInfo[0].formatted_type?.match(/vector\((\d+)\)/);
if (match) {
currentDimensions = parseInt(match[1]);
}
}
// If we couldn't extract from formatted type, use the atttypmod value directly
if (currentDimensions === 0) {
const rawValue = result[0].dimensions;
if (rawValue === -1) {
// No type modifier specified
currentDimensions = 0;
} else {
// For this version of pgvector, atttypmod stores the dimension value directly
currentDimensions = rawValue;
}
}
}
// Also check the dimensions stored in actual records for validation
try {
const recordCheck = await getAppDataSource().query(`
SELECT dimensions, model, COUNT(*) as count
FROM vector_embeddings
GROUP BY dimensions, model
ORDER BY count DESC
LIMIT 5
`);
if (recordCheck && recordCheck.length > 0) {
// If we couldn't determine dimensions from schema, use the most common dimension from records
if (currentDimensions === 0 && recordCheck[0].dimensions) {
currentDimensions = recordCheck[0].dimensions;
}
}
} catch (error) {
console.warn('Could not check dimensions from actual records:', error);
}
// If no dimensions are set or they don't match what we need, handle the mismatch
if (currentDimensions === 0 || currentDimensions !== dimensionsNeeded) {
console.log(
`Vector dimensions mismatch: database=${currentDimensions}, needed=${dimensionsNeeded}`,
);
if (currentDimensions === 0) {
console.log('Setting up vector dimensions for the first time...');
} else {
console.log('Dimension mismatch detected. Clearing existing incompatible vector data...');
// Clear all existing vector embeddings with mismatched dimensions
await clearMismatchedVectorData(dimensionsNeeded);
}
// Drop any existing indices first
await getAppDataSource().query(`DROP INDEX IF EXISTS idx_vector_embeddings_embedding;`);
// Alter the column type with the new dimensions
await getAppDataSource().query(`
ALTER TABLE vector_embeddings
ALTER COLUMN embedding TYPE vector(${dimensionsNeeded});
`);
// Create a new index with better error handling
try {
await getAppDataSource().query(`
CREATE INDEX idx_vector_embeddings_embedding
ON vector_embeddings USING ivfflat (embedding vector_cosine_ops) WITH (lists = 100);
`);
} catch (indexError: any) {
// If the index already exists (code 42P07) or there's a duplicate key constraint (code 23505),
// it's not a critical error as the index is already there
if (indexError.code === '42P07' || indexError.code === '23505') {
console.log('Index already exists, continuing...');
} else {
console.warn('Warning: Failed to create index, but continuing:', indexError.message);
}
}
console.log(`Successfully configured vector dimensions to ${dimensionsNeeded}`);
}
} catch (error: any) {
console.error('Error checking/updating vector dimensions:', error);
throw new Error(`Vector dimension check failed: ${error?.message || 'Unknown error'}`);
}
}
/**
* Clear vector embeddings with mismatched dimensions
* @param expectedDimensions The expected dimensions
* @returns Promise that resolves when cleanup is complete
*/
async function clearMismatchedVectorData(expectedDimensions: number): Promise<void> {
try {
console.log(
`Clearing vector embeddings with dimensions different from ${expectedDimensions}...`,
);
// Delete all embeddings that don't match the expected dimensions
await getAppDataSource().query(
`
DELETE FROM vector_embeddings
WHERE dimensions != $1
`,
[expectedDimensions],
);
console.log('Successfully cleared mismatched vector embeddings');
} catch (error: any) {
console.error('Error clearing mismatched vector data:', error);
throw error;
}
}