mirror of
https://github.com/samanhappy/mcphub.git
synced 2025-12-31 20:00:00 -05:00
feat: introduce auto routing (#122)
This commit is contained in:
318
src/db/connection.ts
Normal file
318
src/db/connection.ts
Normal file
@@ -0,0 +1,318 @@
|
||||
import 'reflect-metadata'; // Ensure reflect-metadata is imported here too
|
||||
import { DataSource, DataSourceOptions } from 'typeorm';
|
||||
import dotenv from 'dotenv';
|
||||
import dotenvExpand from 'dotenv-expand';
|
||||
import path from 'path';
|
||||
import { fileURLToPath } from 'url';
|
||||
import entities from './entities/index.js';
|
||||
import { registerPostgresVectorType } from './types/postgresVectorType.js';
|
||||
import { VectorEmbeddingSubscriber } from './subscribers/VectorEmbeddingSubscriber.js';
|
||||
import { loadSettings } from '../config/index.js';
|
||||
|
||||
// Get database URL from smart routing config or fallback to environment variable
|
||||
const getDatabaseUrl = (): string => {
|
||||
try {
|
||||
const settings = loadSettings();
|
||||
const smartRouting = settings.systemConfig?.smartRouting;
|
||||
|
||||
// Use smart routing dbUrl if smart routing is enabled and dbUrl is configured
|
||||
if (smartRouting?.enabled && smartRouting?.dbUrl) {
|
||||
console.log('Using smart routing database URL');
|
||||
return smartRouting.dbUrl;
|
||||
}
|
||||
} catch (error) {
|
||||
console.warn(
|
||||
'Failed to load settings for smart routing database URL, falling back to environment variable:',
|
||||
error,
|
||||
);
|
||||
}
|
||||
|
||||
return '';
|
||||
};
|
||||
|
||||
// Default database configuration
|
||||
const defaultConfig: DataSourceOptions = {
|
||||
type: 'postgres',
|
||||
url: getDatabaseUrl(),
|
||||
synchronize: true,
|
||||
entities: entities,
|
||||
subscribers: [VectorEmbeddingSubscriber],
|
||||
};
|
||||
|
||||
// AppDataSource is the TypeORM data source
|
||||
let AppDataSource = new DataSource(defaultConfig);
|
||||
|
||||
// Function to create a new DataSource with updated configuration
|
||||
export const updateDataSourceConfig = (): DataSource => {
|
||||
const newConfig: DataSourceOptions = {
|
||||
...defaultConfig,
|
||||
url: getDatabaseUrl(),
|
||||
};
|
||||
|
||||
// If the configuration has changed, we need to create a new DataSource
|
||||
const currentUrl = (AppDataSource.options as any).url;
|
||||
if (currentUrl !== newConfig.url) {
|
||||
console.log('Database URL configuration changed, updating DataSource...');
|
||||
AppDataSource = new DataSource(newConfig);
|
||||
}
|
||||
|
||||
return AppDataSource;
|
||||
};
|
||||
|
||||
// Get the current AppDataSource instance
|
||||
export const getAppDataSource = (): DataSource => {
|
||||
return AppDataSource;
|
||||
};
|
||||
|
||||
// Reconnect database with updated configuration
|
||||
export const reconnectDatabase = async (): Promise<DataSource> => {
|
||||
try {
|
||||
// Close existing connection if it exists
|
||||
if (AppDataSource.isInitialized) {
|
||||
console.log('Closing existing database connection...');
|
||||
await AppDataSource.destroy();
|
||||
}
|
||||
|
||||
// Update configuration and reconnect
|
||||
AppDataSource = updateDataSourceConfig();
|
||||
return await initializeDatabase();
|
||||
} catch (error) {
|
||||
console.error('Error during database reconnection:', error);
|
||||
throw error;
|
||||
}
|
||||
};
|
||||
|
||||
// Initialize database connection
|
||||
export const initializeDatabase = async (): Promise<DataSource> => {
|
||||
try {
|
||||
// Update configuration before initializing
|
||||
AppDataSource = updateDataSourceConfig();
|
||||
|
||||
if (!AppDataSource.isInitialized) {
|
||||
console.log('Initializing database connection...');
|
||||
await AppDataSource.initialize();
|
||||
|
||||
// Register the vector type with TypeORM
|
||||
registerPostgresVectorType(AppDataSource);
|
||||
|
||||
// Create pgvector extension if it doesn't exist
|
||||
await AppDataSource.query('CREATE EXTENSION IF NOT EXISTS vector;').catch((err) => {
|
||||
console.warn('Failed to create vector extension:', err.message);
|
||||
console.warn('Vector functionality may not be available.');
|
||||
});
|
||||
|
||||
// Set up vector column and index with a more direct approach
|
||||
try {
|
||||
// First, create the extension
|
||||
await AppDataSource.query(`CREATE EXTENSION IF NOT EXISTS vector;`);
|
||||
|
||||
// Check if table exists first
|
||||
const tableExists = await AppDataSource.query(`
|
||||
SELECT EXISTS (
|
||||
SELECT FROM information_schema.tables
|
||||
WHERE table_schema = 'public'
|
||||
AND table_name = 'vector_embeddings'
|
||||
);
|
||||
`);
|
||||
|
||||
if (tableExists[0].exists) {
|
||||
// Add pgvector support via raw SQL commands
|
||||
console.log('Configuring vector support for embeddings table...');
|
||||
|
||||
// Step 1: Drop any existing index on the column
|
||||
try {
|
||||
await AppDataSource.query(`DROP INDEX IF EXISTS idx_vector_embeddings_embedding;`);
|
||||
} catch (dropError: any) {
|
||||
console.warn('Note: Could not drop existing index:', dropError.message);
|
||||
}
|
||||
|
||||
// Step 2: Alter column type to vector (if it's not already)
|
||||
try {
|
||||
// Check column type first
|
||||
const columnType = await AppDataSource.query(`
|
||||
SELECT data_type FROM information_schema.columns
|
||||
WHERE table_schema = 'public' AND table_name = 'vector_embeddings'
|
||||
AND column_name = 'embedding';
|
||||
`);
|
||||
|
||||
if (columnType.length > 0 && columnType[0].data_type !== 'vector') {
|
||||
await AppDataSource.query(`
|
||||
ALTER TABLE vector_embeddings
|
||||
ALTER COLUMN embedding TYPE vector USING embedding::vector;
|
||||
`);
|
||||
console.log('Vector embedding column type updated successfully.');
|
||||
}
|
||||
} catch (alterError: any) {
|
||||
console.warn('Could not alter embedding column type:', alterError.message);
|
||||
console.warn('Will try to recreate the table later.');
|
||||
}
|
||||
|
||||
// Step 3: Try to create appropriate indices
|
||||
try {
|
||||
// First, let's check if there are any records to determine the dimensions
|
||||
const records = await AppDataSource.query(`
|
||||
SELECT dimensions FROM vector_embeddings LIMIT 1;
|
||||
`);
|
||||
|
||||
let dimensions = 1536; // Default to common OpenAI embedding size
|
||||
if (records && records.length > 0 && records[0].dimensions) {
|
||||
dimensions = records[0].dimensions;
|
||||
console.log(`Found vector dimension from existing data: ${dimensions}`);
|
||||
} else {
|
||||
console.log(`Using default vector dimension: ${dimensions} (no existing data found)`);
|
||||
}
|
||||
|
||||
// Set the vector dimensions explicitly only if table has data
|
||||
if (records && records.length > 0) {
|
||||
await AppDataSource.query(`
|
||||
ALTER TABLE vector_embeddings
|
||||
ALTER COLUMN embedding TYPE vector(${dimensions});
|
||||
`);
|
||||
|
||||
// Now try to create the index
|
||||
await AppDataSource.query(`
|
||||
CREATE INDEX IF NOT EXISTS idx_vector_embeddings_embedding
|
||||
ON vector_embeddings USING ivfflat (embedding vector_cosine_ops) WITH (lists = 100);
|
||||
`);
|
||||
console.log('Created IVFFlat index for vector similarity search.');
|
||||
} else {
|
||||
console.log(
|
||||
'No existing vector data found, skipping index creation - will be handled by vector service.',
|
||||
);
|
||||
}
|
||||
} catch (indexError: any) {
|
||||
console.warn('IVFFlat index creation failed:', indexError.message);
|
||||
console.warn('Trying alternative index type...');
|
||||
|
||||
try {
|
||||
// Try HNSW index instead
|
||||
await AppDataSource.query(`
|
||||
CREATE INDEX IF NOT EXISTS idx_vector_embeddings_embedding
|
||||
ON vector_embeddings USING hnsw (embedding vector_cosine_ops);
|
||||
`);
|
||||
console.log('Created HNSW index for vector similarity search.');
|
||||
} catch (hnswError: any) {
|
||||
// Final fallback to simpler index type
|
||||
console.warn('HNSW index creation failed too. Using simple L2 distance index.');
|
||||
|
||||
try {
|
||||
// Create a basic GIN index as last resort
|
||||
await AppDataSource.query(`
|
||||
CREATE INDEX IF NOT EXISTS idx_vector_embeddings_embedding
|
||||
ON vector_embeddings USING gin (embedding);
|
||||
`);
|
||||
console.log('Created GIN index for basic vector lookups.');
|
||||
} catch (ginError: any) {
|
||||
console.warn('All index creation attempts failed:', ginError.message);
|
||||
console.warn('Vector search will be slower without an optimized index.');
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
console.log(
|
||||
'Vector embeddings table does not exist yet - will configure after schema sync.',
|
||||
);
|
||||
}
|
||||
} catch (error: any) {
|
||||
console.warn('Could not set up vector column/index:', error.message);
|
||||
console.warn('Will attempt again after schema synchronization.');
|
||||
}
|
||||
|
||||
console.log('Database connection established successfully.');
|
||||
|
||||
// Run one final setup check after schema synchronization is done
|
||||
if (defaultConfig.synchronize) {
|
||||
setTimeout(async () => {
|
||||
try {
|
||||
console.log('Running final vector configuration check...');
|
||||
|
||||
// Try setup again with the same code from above
|
||||
const tableExists = await AppDataSource.query(`
|
||||
SELECT EXISTS (
|
||||
SELECT FROM information_schema.tables
|
||||
WHERE table_schema = 'public'
|
||||
AND table_name = 'vector_embeddings'
|
||||
);
|
||||
`);
|
||||
|
||||
if (tableExists[0].exists) {
|
||||
console.log('Vector embeddings table found, checking configuration...');
|
||||
|
||||
// Get the dimension size first
|
||||
try {
|
||||
// Try to get dimensions from an existing record
|
||||
const records = await AppDataSource.query(`
|
||||
SELECT dimensions FROM vector_embeddings LIMIT 1;
|
||||
`);
|
||||
|
||||
// Only proceed if we have existing data, otherwise let vector service handle it
|
||||
if (records && records.length > 0 && records[0].dimensions) {
|
||||
const dimensions = records[0].dimensions;
|
||||
console.log(`Found vector dimension from database: ${dimensions}`);
|
||||
|
||||
// Ensure column type is vector with explicit dimensions
|
||||
await AppDataSource.query(`
|
||||
ALTER TABLE vector_embeddings
|
||||
ALTER COLUMN embedding TYPE vector(${dimensions});
|
||||
`);
|
||||
console.log('Vector embedding column type updated in final check.');
|
||||
|
||||
// One more attempt at creating the index with dimensions
|
||||
try {
|
||||
// Drop existing index if any
|
||||
await AppDataSource.query(`
|
||||
DROP INDEX IF EXISTS idx_vector_embeddings_embedding;
|
||||
`);
|
||||
|
||||
// Create new index with proper dimensions
|
||||
await AppDataSource.query(`
|
||||
CREATE INDEX idx_vector_embeddings_embedding
|
||||
ON vector_embeddings USING ivfflat (embedding vector_cosine_ops) WITH (lists = 100);
|
||||
`);
|
||||
console.log('Created IVFFlat index in final check.');
|
||||
} catch (indexError: any) {
|
||||
console.warn(
|
||||
'Final index creation attempt did not succeed:',
|
||||
indexError.message,
|
||||
);
|
||||
console.warn('Using basic lookup without vector index.');
|
||||
}
|
||||
} else {
|
||||
console.log(
|
||||
'No existing vector data found, vector dimensions will be configured by vector service.',
|
||||
);
|
||||
}
|
||||
} catch (setupError: any) {
|
||||
console.warn('Vector setup in final check failed:', setupError.message);
|
||||
}
|
||||
}
|
||||
} catch (error: any) {
|
||||
console.warn('Post-initialization vector setup failed:', error.message);
|
||||
}
|
||||
}, 3000); // Give synchronize some time to complete
|
||||
}
|
||||
}
|
||||
return AppDataSource;
|
||||
} catch (error) {
|
||||
console.error('Error during database initialization:', error);
|
||||
throw error;
|
||||
}
|
||||
};
|
||||
|
||||
// Get database connection status
|
||||
export const isDatabaseConnected = (): boolean => {
|
||||
return AppDataSource.isInitialized;
|
||||
};
|
||||
|
||||
// Close database connection
|
||||
export const closeDatabase = async (): Promise<void> => {
|
||||
if (AppDataSource.isInitialized) {
|
||||
await AppDataSource.destroy();
|
||||
console.log('Database connection closed.');
|
||||
}
|
||||
};
|
||||
|
||||
// Export AppDataSource for backward compatibility
|
||||
export { AppDataSource };
|
||||
|
||||
export default getAppDataSource;
|
||||
Reference in New Issue
Block a user