Files
archon/python/src/server/services/knowledge/knowledge_item_service.py
sean-eskerium 1b5196d70f - Fix the threading service to properly handle rate limiting.
- Fix the clipboard functionality to work on non local hosts and https
- Improvements in sockets on front-end and backend. Storing session in local browser storage for reconnect. Logic to prevent socket echos coausing rerender and performance issues.
- Fixes and udpates to re-ordering logic in adding a new task, reordering items on the task table.
- Allowing assignee to not be hardcoded enum.
- Fix to Document Version Control (Improvements still needed in the Milkdown editor conversion to store in the docs.
- Adding types to remove [any] typescript issues.
2025-08-20 02:28:02 -04:00

474 lines
18 KiB
Python

"""
Knowledge Item Service
Handles all knowledge item CRUD operations and data transformations.
"""
from typing import Any
from ...config.logfire_config import safe_logfire_error, safe_logfire_info
class KnowledgeItemService:
"""
Service for managing knowledge items including listing, filtering, updating, and deletion.
"""
def __init__(self, supabase_client):
"""
Initialize the knowledge item service.
Args:
supabase_client: The Supabase client for database operations
"""
self.supabase = supabase_client
async def list_items(
self,
page: int = 1,
per_page: int = 20,
knowledge_type: str | None = None,
search: str | None = None,
) -> dict[str, Any]:
"""
List knowledge items with pagination and filtering.
Args:
page: Page number (1-based)
per_page: Items per page
knowledge_type: Filter by knowledge type
search: Search term for filtering
Returns:
Dict containing items, pagination info, and total count
"""
try:
# Build the query with filters at database level for better performance
query = self.supabase.from_("archon_sources").select("*")
# Apply knowledge type filter at database level if provided
if knowledge_type:
query = query.eq("metadata->>knowledge_type", knowledge_type)
# Apply search filter at database level if provided
if search:
search_pattern = f"%{search}%"
query = query.or_(
f"title.ilike.{search_pattern},summary.ilike.{search_pattern},source_id.ilike.{search_pattern}"
)
# Get total count before pagination
# Clone the query for counting
count_query = self.supabase.from_("archon_sources").select(
"*", count="exact", head=True
)
# Apply same filters to count query
if knowledge_type:
count_query = count_query.eq("metadata->>knowledge_type", knowledge_type)
if search:
search_pattern = f"%{search}%"
count_query = count_query.or_(
f"title.ilike.{search_pattern},summary.ilike.{search_pattern},source_id.ilike.{search_pattern}"
)
count_result = count_query.execute()
total = count_result.count if hasattr(count_result, "count") else 0
# Apply pagination at database level
start_idx = (page - 1) * per_page
query = query.range(start_idx, start_idx + per_page - 1)
# Execute query
result = query.execute()
sources = result.data if result.data else []
# Get source IDs for batch queries
source_ids = [source["source_id"] for source in sources]
# Debug log source IDs
safe_logfire_info(f"Source IDs for batch query: {source_ids}")
# Batch fetch related data to avoid N+1 queries
first_urls = {}
code_example_counts = {}
chunk_counts = {}
if source_ids:
# Batch fetch first URLs
urls_result = (
self.supabase.from_("archon_crawled_pages")
.select("source_id, url")
.in_("source_id", source_ids)
.execute()
)
# Group URLs by source_id (take first one for each)
for item in urls_result.data or []:
if item["source_id"] not in first_urls:
first_urls[item["source_id"]] = item["url"]
# Get code example counts per source - NO CONTENT, just counts!
# Fetch counts individually for each source
for source_id in source_ids:
count_result = (
self.supabase.from_("archon_code_examples")
.select("id", count="exact", head=True)
.eq("source_id", source_id)
.execute()
)
code_example_counts[source_id] = (
count_result.count if hasattr(count_result, "count") else 0
)
# Ensure all sources have a count (default to 0)
for source_id in source_ids:
if source_id not in code_example_counts:
code_example_counts[source_id] = 0
chunk_counts[source_id] = 0 # Default to 0 to avoid timeout
safe_logfire_info("Code example counts", code_counts=code_example_counts)
# Transform sources to items with batched data
items = []
for source in sources:
source_id = source["source_id"]
source_metadata = source.get("metadata", {})
# Use batched data instead of individual queries
first_page_url = first_urls.get(source_id, f"source://{source_id}")
# Use original crawl URL instead of first page URL
original_url = source_metadata.get("original_url") or first_page_url
code_examples_count = code_example_counts.get(source_id, 0)
chunks_count = chunk_counts.get(source_id, 0)
# Determine source type
source_type = self._determine_source_type(source_metadata, original_url)
item = {
"id": source_id,
"title": source.get("title", source.get("summary", "Untitled")),
"url": original_url,
"source_id": source_id,
"code_examples": [{"count": code_examples_count}]
if code_examples_count > 0
else [], # Minimal array just for count display
"metadata": {
"knowledge_type": source_metadata.get("knowledge_type", "technical"),
"tags": source_metadata.get("tags", []),
"source_type": source_type,
"status": "active",
"description": source_metadata.get(
"description", source.get("summary", "")
),
"chunks_count": chunks_count,
"word_count": source.get("total_word_count", 0),
"estimated_pages": round(source.get("total_word_count", 0) / 250, 1),
"pages_tooltip": f"{round(source.get('total_word_count', 0) / 250, 1)} pages (≈ {source.get('total_word_count', 0):,} words)",
"last_scraped": source.get("updated_at"),
"file_name": source_metadata.get("file_name"),
"file_type": source_metadata.get("file_type"),
"update_frequency": source_metadata.get("update_frequency", 7),
"code_examples_count": code_examples_count,
**source_metadata,
},
"created_at": source.get("created_at"),
"updated_at": source.get("updated_at"),
}
items.append(item)
safe_logfire_info(
f"Knowledge items retrieved | total={total} | page={page} | filtered_count={len(items)}"
)
return {
"items": items,
"total": total,
"page": page,
"per_page": per_page,
"pages": (total + per_page - 1) // per_page,
}
except Exception as e:
safe_logfire_error(f"Failed to list knowledge items | error={str(e)}")
raise
async def get_item(self, source_id: str) -> dict[str, Any] | None:
"""
Get a single knowledge item by source ID.
Args:
source_id: The source ID to retrieve
Returns:
Knowledge item dict or None if not found
"""
try:
safe_logfire_info(f"Getting knowledge item | source_id={source_id}")
# Get the source record
result = (
self.supabase.from_("archon_sources")
.select("*")
.eq("source_id", source_id)
.single()
.execute()
)
if not result.data:
return None
# Transform the source to item format
item = await self._transform_source_to_item(result.data)
return item
except Exception as e:
safe_logfire_error(
f"Failed to get knowledge item | error={str(e)} | source_id={source_id}"
)
return None
async def update_item(
self, source_id: str, updates: dict[str, Any]
) -> tuple[bool, dict[str, Any]]:
"""
Update a knowledge item's metadata.
Args:
source_id: The source ID to update
updates: Dictionary of fields to update
Returns:
Tuple of (success, result)
"""
try:
safe_logfire_info(
f"Updating knowledge item | source_id={source_id} | updates={updates}"
)
# Prepare update data
update_data = {}
# Handle title updates
if "title" in updates:
update_data["title"] = updates["title"]
# Handle metadata updates
metadata_fields = [
"description",
"knowledge_type",
"tags",
"status",
"update_frequency",
"group_name",
]
metadata_updates = {k: v for k, v in updates.items() if k in metadata_fields}
if metadata_updates:
# Get current metadata
current_response = (
self.supabase.table("archon_sources")
.select("metadata")
.eq("source_id", source_id)
.execute()
)
if current_response.data:
current_metadata = current_response.data[0].get("metadata", {})
current_metadata.update(metadata_updates)
update_data["metadata"] = current_metadata
else:
update_data["metadata"] = metadata_updates
# Perform the update
result = (
self.supabase.table("archon_sources")
.update(update_data)
.eq("source_id", source_id)
.execute()
)
if result.data:
safe_logfire_info(f"Knowledge item updated successfully | source_id={source_id}")
return True, {
"success": True,
"message": f"Successfully updated knowledge item {source_id}",
"source_id": source_id,
}
else:
safe_logfire_error(f"Knowledge item not found | source_id={source_id}")
return False, {"error": f"Knowledge item {source_id} not found"}
except Exception as e:
safe_logfire_error(
f"Failed to update knowledge item | error={str(e)} | source_id={source_id}"
)
return False, {"error": str(e)}
async def get_available_sources(self) -> dict[str, Any]:
"""
Get all available sources with their details.
Returns:
Dict containing sources list and count
"""
try:
# Query the sources table
result = self.supabase.from_("archon_sources").select("*").order("source_id").execute()
# Format the sources
sources = []
if result.data:
for source in result.data:
sources.append({
"source_id": source.get("source_id"),
"title": source.get("title", source.get("summary", "Untitled")),
"summary": source.get("summary"),
"metadata": source.get("metadata", {}),
"total_words": source.get("total_words", source.get("total_word_count", 0)),
"update_frequency": source.get("update_frequency", 7),
"created_at": source.get("created_at"),
"updated_at": source.get("updated_at", source.get("created_at")),
})
return {"success": True, "sources": sources, "count": len(sources)}
except Exception as e:
safe_logfire_error(f"Failed to get available sources | error={str(e)}")
return {"success": False, "error": str(e), "sources": [], "count": 0}
async def _get_all_sources(self) -> list[dict[str, Any]]:
"""Get all sources from the database."""
result = await self.get_available_sources()
return result.get("sources", [])
async def _transform_source_to_item(self, source: dict[str, Any]) -> dict[str, Any]:
"""
Transform a source record into a knowledge item with enriched data.
Args:
source: The source record from database
Returns:
Transformed knowledge item
"""
source_metadata = source.get("metadata", {})
source_id = source["source_id"]
# Get first page URL
first_page_url = await self._get_first_page_url(source_id)
# Determine source type
source_type = self._determine_source_type(source_metadata, first_page_url)
# Get code examples
code_examples = await self._get_code_examples(source_id)
return {
"id": source_id,
"title": source.get("title", source.get("summary", "Untitled")),
"url": first_page_url,
"source_id": source_id,
"code_examples": code_examples,
"metadata": {
"knowledge_type": source_metadata.get("knowledge_type", "technical"),
"tags": source_metadata.get("tags", []),
"source_type": source_type,
"status": "active",
"description": source_metadata.get("description", source.get("summary", "")),
"chunks_count": await self._get_chunks_count(source_id), # Get actual chunk count
"word_count": source.get("total_words", 0),
"estimated_pages": round(
source.get("total_words", 0) / 250, 1
), # Average book page = 250 words
"pages_tooltip": f"{round(source.get('total_words', 0) / 250, 1)} pages (≈ {source.get('total_words', 0):,} words)",
"last_scraped": source.get("updated_at"),
"file_name": source_metadata.get("file_name"),
"file_type": source_metadata.get("file_type"),
"update_frequency": source.get("update_frequency", 7),
"code_examples_count": len(code_examples),
**source_metadata,
},
"created_at": source.get("created_at"),
"updated_at": source.get("updated_at"),
}
async def _get_first_page_url(self, source_id: str) -> str:
"""Get the first page URL for a source."""
try:
pages_response = (
self.supabase.from_("archon_crawled_pages")
.select("url")
.eq("source_id", source_id)
.limit(1)
.execute()
)
if pages_response.data:
return pages_response.data[0].get("url", f"source://{source_id}")
except Exception:
pass
return f"source://{source_id}"
async def _get_code_examples(self, source_id: str) -> list[dict[str, Any]]:
"""Get code examples for a source."""
try:
code_examples_response = (
self.supabase.from_("archon_code_examples")
.select("id, content, summary, metadata")
.eq("source_id", source_id)
.execute()
)
return code_examples_response.data if code_examples_response.data else []
except Exception:
return []
def _determine_source_type(self, metadata: dict[str, Any], url: str) -> str:
"""Determine the source type from metadata or URL pattern."""
stored_source_type = metadata.get("source_type")
if stored_source_type:
return stored_source_type
# Legacy fallback - check URL pattern
return "file" if url.startswith("file://") else "url"
def _filter_by_search(self, items: list[dict[str, Any]], search: str) -> list[dict[str, Any]]:
"""Filter items by search term."""
search_lower = search.lower()
return [
item
for item in items
if search_lower in item["title"].lower()
or search_lower in item["metadata"].get("description", "").lower()
or any(search_lower in tag.lower() for tag in item["metadata"].get("tags", []))
]
def _filter_by_knowledge_type(
self, items: list[dict[str, Any]], knowledge_type: str
) -> list[dict[str, Any]]:
"""Filter items by knowledge type."""
return [item for item in items if item["metadata"].get("knowledge_type") == knowledge_type]
async def _get_chunks_count(self, source_id: str) -> int:
"""Get the actual number of chunks for a source."""
try:
# Count the actual rows in crawled_pages for this source
result = (
self.supabase.table("archon_crawled_pages")
.select("*", count="exact")
.eq("source_id", source_id)
.execute()
)
# Return the count of pages (chunks)
return result.count if result.count else 0
except Exception as e:
# If we can't get chunk count, return 0
safe_logfire_info(f"Failed to get chunk count for {source_id}: {e}")
return 0