1
0
mirror of https://github.com/coleam00/Archon.git synced 2026-01-11 00:58:24 -05:00

updates to the threading service and crawling from Rasmus PR's

This commit is contained in:
sean-eskerium
2025-08-20 16:19:15 -04:00
parent 58bda51ef5
commit c22bf07dd3
3 changed files with 162 additions and 95 deletions

View File

@@ -93,18 +93,19 @@ class RateLimiter:
self._clean_old_entries(now)
# Check if we can make the request
while not self._can_make_request(estimated_tokens):
if not self._can_make_request(estimated_tokens):
wait_time = self._calculate_wait_time(estimated_tokens)
if wait_time > 0:
logfire_logger.info(
f"Rate limiting: waiting {wait_time:.1f}s (tokens={estimated_tokens}, current_usage={self._get_current_usage()})"
f"Rate limiting: waiting {wait_time:.1f}s",
extra={
"tokens": estimated_tokens,
"current_usage": self._get_current_usage(),
}
)
await asyncio.sleep(wait_time)
# Clean old entries after waiting
now = time.time()
self._clean_old_entries(now)
else:
return False
return await self.acquire(estimated_tokens)
return False
# Record the request
self.request_times.append(now)
@@ -199,13 +200,21 @@ class MemoryAdaptiveDispatcher:
# Reduce workers when memory is high
workers = max(1, base // 2)
logfire_logger.warning(
f"High memory usage detected, reducing workers (memory_percent={metrics.memory_percent}, workers={workers})"
"High memory usage detected, reducing workers",
extra={
"memory_percent": metrics.memory_percent,
"workers": workers,
}
)
elif metrics.cpu_percent > self.config.cpu_threshold * 100:
# Reduce workers when CPU is high
workers = max(1, base // 2)
logfire_logger.warning(
f"High CPU usage detected, reducing workers (cpu_percent={metrics.cpu_percent}, workers={workers})"
"High CPU usage detected, reducing workers",
extra={
"cpu_percent": metrics.cpu_percent,
"workers": workers,
}
)
elif metrics.memory_percent < 50 and metrics.cpu_percent < 50:
# Increase workers when resources are available
@@ -235,7 +244,14 @@ class MemoryAdaptiveDispatcher:
semaphore = asyncio.Semaphore(optimal_workers)
logfire_logger.info(
f"Starting adaptive processing (items_count={len(items)}, workers={optimal_workers}, mode={mode}, memory_percent={self.last_metrics.memory_percent}, cpu_percent={self.last_metrics.cpu_percent})"
"Starting adaptive processing",
extra={
"items_count": len(items),
"workers": optimal_workers,
"mode": mode,
"memory_percent": self.last_metrics.memory_percent,
"cpu_percent": self.last_metrics.cpu_percent,
}
)
# Track active workers
@@ -310,7 +326,8 @@ class MemoryAdaptiveDispatcher:
del active_workers[worker_id]
logfire_logger.error(
f"Processing failed for item {index} (error={str(e)}, item_index={index})"
f"Processing failed for item {index}",
extra={"error": str(e), "item_index": index}
)
return None
@@ -325,7 +342,13 @@ class MemoryAdaptiveDispatcher:
success_rate = len(successful_results) / len(items) * 100
logfire_logger.info(
f"Adaptive processing completed (total_items={len(items)}, successful={len(successful_results)}, success_rate={success_rate:.1f}%, workers_used={optimal_workers})"
"Adaptive processing completed",
extra={
"total_items": len(items),
"successful": len(successful_results),
"success_rate": f"{success_rate:.1f}%",
"workers_used": optimal_workers,
}
)
return successful_results
@@ -343,7 +366,8 @@ class WebSocketSafeProcessor:
await websocket.accept()
self.active_connections.append(websocket)
logfire_logger.info(
f"WebSocket client connected (total_connections={len(self.active_connections)})"
"WebSocket client connected",
extra={"total_connections": len(self.active_connections)}
)
def disconnect(self, websocket: WebSocket):
@@ -351,7 +375,8 @@ class WebSocketSafeProcessor:
if websocket in self.active_connections:
self.active_connections.remove(websocket)
logfire_logger.info(
f"WebSocket client disconnected (remaining_connections={len(self.active_connections)})"
"WebSocket client disconnected",
extra={"remaining_connections": len(self.active_connections)}
)
async def broadcast_progress(self, message: dict[str, Any]):
@@ -462,7 +487,7 @@ class ThreadingService:
self._running = True
self._health_check_task = asyncio.create_task(self._health_check_loop())
logfire_logger.info(f"Threading service started (config={self.config.__dict__})")
logfire_logger.info("Threading service started", extra={"config": self.config.__dict__})
async def stop(self):
"""Stop the threading service"""
@@ -498,7 +523,8 @@ class ThreadingService:
finally:
duration = time.time() - start_time
logfire_logger.debug(
f"Rate limited operation completed (duration={duration}, tokens={estimated_tokens})"
"Rate limited operation completed",
extra={"duration": duration, "tokens": estimated_tokens},
)
async def run_cpu_intensive(self, func: Callable, *args, **kwargs) -> Any:
@@ -550,30 +576,44 @@ class ThreadingService:
# Log system metrics
logfire_logger.info(
f"System health check (memory_percent={metrics.memory_percent}, cpu_percent={metrics.cpu_percent}, available_memory_gb={metrics.available_memory_gb}, active_threads={metrics.active_threads}, active_websockets={len(self.websocket_processor.active_connections)})"
"System health check",
extra={
"memory_percent": metrics.memory_percent,
"cpu_percent": metrics.cpu_percent,
"available_memory_gb": metrics.available_memory_gb,
"active_threads": metrics.active_threads,
"active_websockets": len(self.websocket_processor.active_connections),
}
)
# Alert on critical thresholds
if metrics.memory_percent > 90:
logfire_logger.warning(
f"Critical memory usage (memory_percent={metrics.memory_percent})"
"Critical memory usage",
extra={"memory_percent": metrics.memory_percent}
)
# Force garbage collection
gc.collect()
if metrics.cpu_percent > 95:
logfire_logger.warning(f"Critical CPU usage (cpu_percent={metrics.cpu_percent})")
logfire_logger.warning(
"Critical CPU usage", extra={"cpu_percent": metrics.cpu_percent}
)
# Check for memory leaks (too many threads)
if metrics.active_threads > self.config.max_workers * 3:
logfire_logger.warning(
f"High thread count detected (active_threads={metrics.active_threads}, max_expected={self.config.max_workers * 3})"
"High thread count detected",
extra={
"active_threads": metrics.active_threads,
"max_expected": self.config.max_workers * 3,
}
)
await asyncio.sleep(self.config.health_check_interval)
except Exception as e:
logfire_logger.error(f"Health check failed (error={str(e)})")
logfire_logger.error("Health check failed", extra={"error": str(e)})
await asyncio.sleep(self.config.health_check_interval)
@@ -601,4 +641,4 @@ async def stop_threading_service():
global _threading_service
if _threading_service:
await _threading_service.stop()
_threading_service = None
_threading_service = None