mirror of
https://github.com/coleam00/Archon.git
synced 2026-01-10 16:47:58 -05:00
The New Archon (Beta) - The Operating System for AI Coding Assistants!
This commit is contained in:
@@ -0,0 +1,72 @@
|
||||
-- Enable the pgvector extension
|
||||
create extension if not exists vector;
|
||||
|
||||
-- Create the documentation chunks table
|
||||
create table site_pages (
|
||||
id bigserial primary key,
|
||||
url varchar not null,
|
||||
chunk_number integer not null,
|
||||
title varchar not null,
|
||||
summary varchar not null,
|
||||
content text not null, -- Added content column
|
||||
metadata jsonb not null default '{}'::jsonb, -- Added metadata column
|
||||
embedding vector(1536), -- OpenAI embeddings are 1536 dimensions
|
||||
created_at timestamp with time zone default timezone('utc'::text, now()) not null,
|
||||
|
||||
-- Add a unique constraint to prevent duplicate chunks for the same URL
|
||||
unique(url, chunk_number)
|
||||
);
|
||||
|
||||
-- Create an index for better vector similarity search performance
|
||||
create index on site_pages using ivfflat (embedding vector_cosine_ops);
|
||||
|
||||
-- Create an index on metadata for faster filtering
|
||||
create index idx_site_pages_metadata on site_pages using gin (metadata);
|
||||
|
||||
-- Create a function to search for documentation chunks
|
||||
create function match_site_pages (
|
||||
query_embedding vector(1536),
|
||||
match_count int default 10,
|
||||
filter jsonb DEFAULT '{}'::jsonb
|
||||
) returns table (
|
||||
id bigint,
|
||||
url varchar,
|
||||
chunk_number integer,
|
||||
title varchar,
|
||||
summary varchar,
|
||||
content text,
|
||||
metadata jsonb,
|
||||
similarity float
|
||||
)
|
||||
language plpgsql
|
||||
as $$
|
||||
#variable_conflict use_column
|
||||
begin
|
||||
return query
|
||||
select
|
||||
id,
|
||||
url,
|
||||
chunk_number,
|
||||
title,
|
||||
summary,
|
||||
content,
|
||||
metadata,
|
||||
1 - (site_pages.embedding <=> query_embedding) as similarity
|
||||
from site_pages
|
||||
where metadata @> filter
|
||||
order by site_pages.embedding <=> query_embedding
|
||||
limit match_count;
|
||||
end;
|
||||
$$;
|
||||
|
||||
-- Everything above will work for any PostgreSQL database. The below commands are for Supabase security
|
||||
|
||||
-- Enable RLS on the table
|
||||
alter table site_pages enable row level security;
|
||||
|
||||
-- Create a policy that allows anyone to read
|
||||
create policy "Allow public read access"
|
||||
on site_pages
|
||||
for select
|
||||
to public
|
||||
using (true);
|
||||
@@ -0,0 +1,111 @@
|
||||
import os
|
||||
from datetime import datetime
|
||||
from functools import wraps
|
||||
import inspect
|
||||
import json
|
||||
from typing import Optional
|
||||
from dotenv import load_dotenv
|
||||
|
||||
# Load environment variables from .env file
|
||||
load_dotenv()
|
||||
|
||||
def write_to_log(message: str):
|
||||
"""Write a message to the logs.txt file in the workbench directory.
|
||||
|
||||
Args:
|
||||
message: The message to log
|
||||
"""
|
||||
# Get the directory one level up from the current file
|
||||
current_dir = os.path.dirname(os.path.abspath(__file__))
|
||||
parent_dir = os.path.dirname(current_dir)
|
||||
workbench_dir = os.path.join(parent_dir, "workbench")
|
||||
log_path = os.path.join(workbench_dir, "logs.txt")
|
||||
os.makedirs(workbench_dir, exist_ok=True)
|
||||
|
||||
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
||||
log_entry = f"[{timestamp}] {message}\n"
|
||||
|
||||
with open(log_path, "a", encoding="utf-8") as f:
|
||||
f.write(log_entry)
|
||||
|
||||
def get_env_var(var_name: str) -> Optional[str]:
|
||||
"""Get an environment variable from the saved JSON file or from environment variables.
|
||||
|
||||
Args:
|
||||
var_name: The name of the environment variable to retrieve
|
||||
|
||||
Returns:
|
||||
The value of the environment variable or None if not found
|
||||
"""
|
||||
# Path to the JSON file storing environment variables
|
||||
current_dir = os.path.dirname(os.path.abspath(__file__))
|
||||
parent_dir = os.path.dirname(current_dir)
|
||||
env_file_path = os.path.join(current_dir, "env_vars.json")
|
||||
|
||||
# First try to get from JSON file
|
||||
if os.path.exists(env_file_path):
|
||||
try:
|
||||
with open(env_file_path, "r") as f:
|
||||
env_vars = json.load(f)
|
||||
if var_name in env_vars and env_vars[var_name]:
|
||||
return env_vars[var_name]
|
||||
except (json.JSONDecodeError, IOError) as e:
|
||||
write_to_log(f"Error reading env_vars.json: {str(e)}")
|
||||
|
||||
# If not found in JSON, try to get from environment variables
|
||||
return os.environ.get(var_name)
|
||||
|
||||
def save_env_var(var_name: str, value: str) -> bool:
|
||||
"""Save an environment variable to the JSON file.
|
||||
|
||||
Args:
|
||||
var_name: The name of the environment variable
|
||||
value: The value to save
|
||||
|
||||
Returns:
|
||||
True if successful, False otherwise
|
||||
"""
|
||||
# Path to the JSON file storing environment variables
|
||||
current_dir = os.path.dirname(os.path.abspath(__file__))
|
||||
env_file_path = os.path.join(current_dir, "env_vars.json")
|
||||
|
||||
# Load existing env vars or create empty dict
|
||||
env_vars = {}
|
||||
if os.path.exists(env_file_path):
|
||||
try:
|
||||
with open(env_file_path, "r") as f:
|
||||
env_vars = json.load(f)
|
||||
except (json.JSONDecodeError, IOError) as e:
|
||||
write_to_log(f"Error reading env_vars.json: {str(e)}")
|
||||
# Continue with empty dict if file is corrupted
|
||||
|
||||
# Update the variable
|
||||
env_vars[var_name] = value
|
||||
|
||||
# Save back to file
|
||||
try:
|
||||
with open(env_file_path, "w") as f:
|
||||
json.dump(env_vars, f, indent=2)
|
||||
return True
|
||||
except IOError as e:
|
||||
write_to_log(f"Error writing to env_vars.json: {str(e)}")
|
||||
return False
|
||||
|
||||
def log_node_execution(func):
|
||||
"""Decorator to log the start and end of graph node execution.
|
||||
|
||||
Args:
|
||||
func: The async function to wrap
|
||||
"""
|
||||
@wraps(func)
|
||||
async def wrapper(*args, **kwargs):
|
||||
func_name = func.__name__
|
||||
write_to_log(f"Starting node: {func_name}")
|
||||
try:
|
||||
result = await func(*args, **kwargs)
|
||||
write_to_log(f"Completed node: {func_name}")
|
||||
return result
|
||||
except Exception as e:
|
||||
write_to_log(f"Error in node {func_name}: {str(e)}")
|
||||
raise
|
||||
return wrapper
|
||||
Reference in New Issue
Block a user